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Multilevel Second Order Optimization
Motivation

minu Ĵ(u) := J(y , u) s.t. e(y , u) = 0

PDAE constrained optimization requires several solves of complex

time-dependent differential equations

⇒ Design efficient second order optimization algorithms which
reduce the number of PDAE solves
carry out as many solves on coarse grids as possible but still reasonable
cooperate with fully adaptive state of the art PDAE solvers, like KARDOS

We use:
Derivative based optimization technique
Backwards approach
“First optimize then discretize” strategy
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Multilevel Second Order Optimization
Control Update

Control update su with uk+1 = uk + su is computed by solving

Ĵ ′′(uk)su = −Ĵ ′(uk)

with reduced gradient Ĵ ′(uk) and reduced Hessian Ĵ ′′(uk)

Reduced Hessian can not be computed on its own but only applied to a
direction su which again is the input of this very computation

state
system

adjoint
system

linearized
state

system

second
adjoint
system

BiCGstab
yk s(i)u :=−Ĵ(uk) s(i)y Ĵ ′′(uk)s(i)u

cg stop

uk+1 = uk + s(i+1)
u

repeat

s(i+1)
u
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Multilevel Second Order Optimization
Control Update

Control update su with uk+1 = uk + su is computed by solving

Ĵ ′′(uk)su = −Ĵ ′(uk)

with reduced gradient Ĵ ′(uk) and reduced Hessian Ĵ ′′(uk)

Reduced Hessian can not be computed on its own but only applied to a
direction su which again is the input of this very computation

	 Control update su must be computed within appropriate iterative method

⊕ Control update su carries direction and step length

⊕ Superlinear or even quadratic convergence
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Multilevel Second Order Optimization
Grid Adjustment

Q When to stop inner iteration?

A In accordance to accuracy of outer iteration ⇒ toli = tol1.5o . (superlinear
convergence)

Q How to choose tolerances for outer iteration?
A In accordance to distance of current control and optimal control

Q How to measure this distance?
A The reduced gradient descents towards zero as approaching the optimum

Refine if global state and adjoint errors in space and time become greater
then a multiple of reduced gradient
If point wise control constraints are present consider projected gradient
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Glass Cooling
Motivation

Glass is processed at temperatures
up to 1000◦C

Expeditious cooling at room temperature
causes cracks inside the material

Solution: Controlled cooling within a preheated furnace by decreasing its
temperature from 700-800◦C to 20◦C

Radiation plays a dominant role because of high temperatures

⇒ Optimization of furnace temperature results in an optimal boundary
control problem with high dimensional and highly nonlinear partial
differential algebraic equations in at least two components
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Glass Cooling
Modelling

Dimensionless state system with glass temperature T (x , t), mean radiation
intensity φ(x , t) and furnace temperature u(t) (control)

∂tT − k∆T − 1

3κ
∆φ = 0 in Ω× (0, te ]

− ε2

3κ
∆φ = −κφ + 4πκaT 4 in Ω× (0, te ]

kn · ∇T +
1

3κ
n · ∇φ =

h

ε
(u − T ) +

1

2ε
4πau4 − 1

2ε
φ in ∂Ω× (0, te ]

ε2

3κ
n · ∇φ =

ε

2
(4πau4 − φ) in ∂Ω× (0, te ]

T (0, x) = T0(x) on Ω.

Gray scale model, A. Klar, R. Pinnau, G. Thömmes et al.
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Optimal Control Problem
Objective Functional

Temperature T should follow desired profile Td

Regularization of furnace temperatue u(t)

J(T , u) := 1
2

∫ te

0

‖T − Td‖2
L2(Ω)dt + δe

2 ‖(T − Td)(te)‖2
L2(Ω)+

+ δu

2

∫ te

0

‖u − ud‖2
L2(∂Ω)dt

The separate tracking of the final state is important to obtain

non-vanishing gradient or Hessian information in the last time step
Cooperation with M. Herty, RWTH Aachen
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Numerical Experiments
Setting

Present performace of multilevel strategy

Give comparative values (disable multilevel strategy, gradient method)

Computational domain [−2, 2]× [−2, 2] ∈ R2, time t ∈ [0, 0.1]

T (x , 0) = 900, u(t) spatially constant

u0 = ud = Td : exponential decrease from 900 to 400

Set δu = 0.1, δe = 0.1
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Numerical Experiments
Multilevel SQP-Method, Glass Cooling

Start with 9 time steps and 144 spatial nodes

Grids are automatically adjusted if global error estimators exceed

reduced gradient norm

Algorithm is stopped if reduced gradient norm and all error estimators are

less than 1.0e-3

Optimal control is computed with 56 time points and up to 4239 spatial

nodes
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Numerical Experiments
Multilevel Strategy
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Numerical Experiments
Optimization Protocol

reduced maximal time #time #space #cg reason to
it objective grad. norm error norm tolerance steps nodes iter stop bicg CPU
1 1.8163e+04 6.4434e-01 2.5392e-02 5.00e-02 9 144 3.83
2 4.4280e+03 1.4790e-01 2.4077e-02 5.00e-02 9 144 2 res small 15.67
3 2.8917e+03 4.6834e-02 3.5476e-02 5.00e-02 9 144 2 res small 27.66
4 2.5099e+03 1.5117e-02 4.7599e-02 5.00e-02 9 144 3 res small 43.97

4 2.4997e+03 1.6096e-02 6.9082e-03 1.59e-02 17 144 48.29
5 2.4038e+03 4.5038e-03 6.4502e-03 1.59e-02 17 144 4 max iter 77.31

5 2.4053e+03 4.8374e-03 3.2651e-03 8.24e-03 21 144 85.58
6 2.3925e+03 8.0697e-04 9.0239e-03 8.24e-03 21 144 4 max iter 119.55

6 2.3578e+03 1.1139e-03 5.1654e-04 7.36e-04 56 144-4239 148.95
7 2.3570e+03 5.8087e-05 5.1826e-04 7.36e-04 56 144-4239 4 max iter 473.02

Four optimization steps on coarse grid with only 2-3 BiCGstab iterations

Only one optimization step on each refined grid
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Numerical Experiments
Multilevel SQP-Method, Glass Cooling
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SQP with multilevel strategy → CPU: 473 seconds (8 minutes)
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Numerical Experiments
Improvement: Multilevel Strategy
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SQP without multilevel → CPU: 4073 seconds (1 hour and 8 minutes)
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Numerical Experiments
Improvement: Second Order Derivative
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Gradient method with multilevel → CPU: 2853 seconds (48 minutes)
Gradient method without multilevel → CPU: ≈ 25000 seconds (7 hours)
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Numerical Experiments
Multilevel SQP-Method, Glass Cooling

Second order information reduces CPU by a factor six

Multilevel strategy reduces CPU by a factor ten

Overall saving: factor 60

(which means a saving of 98% in comparison to the fixed gradient

method)

All final results are comparable

15.01.2009 | Department of Mathematics | Numerical Analysis | Debora Clever | 17



Multilevel Optimization Techniques
Summary and Current Research

Summary
Derivation of a multilevel SQP-method using the exact reduced Hessian
(in cooperation with C.Ziems, S. Ulbrich, TU Darmstadt)
Final state tracking to improve derivative information
(in cooperation with M. Herty, RWTH Aachen)
Application to glass cooling problem, modelled by radiative heat transfer
(gray scale model, A. Klar, R. Pinnau, G. Thömmes et al.)
CPU reduction by approximately 98% in comparison to a gradient method
with simple line search on a fixed grid

Current research
Augment objective functional with glass temperature gradient and
corresponding final state term (→ theory)
Application to N-band modell to take frequency dependent behavior of
radiation into account
Consideration of control constraints as additional minimization problem to
ensure proper step size
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