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Problem setting

Consider the following optimal control problem

(P)

 min J(u) =

∫
Ω

L(x , yu(x)) dx +

∫
Γ

l(s, yu(s), u(s)) dσ(x) ,

s.t. ua(s) ≤ u(s) ≤ ub(s) for a.e. s ∈ Γ (ua, ub ∈ L∞(Γ)) ,

where yu is the solution of the quasilinear elliptic equation{
−div [a(x , y(x))∇y(x)] + f(x , y(x)) = 0 in Ω ,

a(x , y(x))∇y(x) · ~n(x) = u(x) on Γ .
(1)

Ω is an open convex bounded polygonal set of R2 with boundary Γ.

Which assumptions on a and f yield the well-posedness of the state equation?
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Study of the quasilinear equation

’Basic’ Assumptions:

1 a(·, 0) ∈ L∞(Ω), a is locally Lipschitz continuous in y and

∃αa > 0 such that a(x , y) ≥ αa for a.e. x ∈ Ω and all y ∈ R .

2 (i) f(x , ·) is monotone non-decreasing for a.a. x ∈ Ω, for every M > 0 there
exists ψM ∈ Lq(Ω) (q ≥ 2p

p+2 , p > 2) such that f(x , y) ≤ ψM(x) for a.e.

x ∈ Ω̄ and all |y | ≤ M.

(ii) ∃αf > 0 and E ⊂ Ω, with |E | > 0, such that
∂f

∂y
(x , y) ≥ αf

for all (x , y) ∈ E × R.

I Main difficulty: The state equation is non-monotone.

Example{
−div

[
(φ0(x) + y 2)∇y

]
+ exp(y) = 0 in Ω ,

(φ0(x) + y 2)∇y · ~n = u on Γ , (φ0 ∈ C(Ω̄), φ0 ≥ α > 0) .
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Existence and uniqueness of a solution to (1)

Theorem

For any u ∈ Ls(Γ), s > 1, the state equation (1) has a unique solution
yu ∈ H1(Ω) ∩ Cµ(Ω̄) for some µ ∈ (0, 1) independent of u.

If a is continuous on Ω̄× R, then there exists

p0 ≥
6

3−
√

5
≈ 7.854

such that for any u ∈ Lp/2(Γ), p ∈ (2, p0], the solution yu ∈W 1,p(Ω).

N Reduction from the variable coefficient case to the constant coefficient case
(Method by Dauge [1]).

If the Lipschitz property of a w.r.t. y fails the uniqueness of a solution to (1)
is not guaranteed.

M. Dauge, Neumann and mixed problems on curvilinear polyhedra. Integral Equations
Oper. Theory, 15, No.2:227-261, 1992.
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Differentiability of the control-to-state mapping

Linearization of the state equation around a solution y of (1) yields


−div

[
a(x , y)∇z(x) +

∂a

∂y
(x , y)z∇y

]
+
∂f

∂y
(x , y)z = 0 in Ω ,[

a(x , y)∇z(x) +
∂a

∂y
(x , y)z(x)∇y

]
· ~n(x) = v(x) on Γ .

(2)

Given y ∈W 1,p(Ω) for any v ∈ H−1/2(Γ) the linearized equation (2) has a
unique solution zv ∈ H1(Ω).

If a is continuous on Ω̄× R, then there exists p0 ≥ 6
3−
√

5
such that for

p ∈ (2, p0] the control-to-state mapping

G : L
p/2(Γ)→W 1,p(Ω) , G (u) = yu , is of class C 1

and for any v ∈ Lp/2(Γ) the function zv = G ′(u)v is the unique solution in
W 1,p(Ω) of (2) at y = yu.
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Existence of a solution for problem (P)

Assume that

1 a is continuous on Ω̄× R,
2 for any M > 0, there exist functions ψl,M ∈ L1(Γ), ψL,M ∈ L1(Ω) such that

|L(x , y)| ≤ ψL,M(x) and |l(s, y , u)| ≤ ψl,M(s) ,

for a.e. x ∈ Ω, s ∈ Γ and |y |, |u| ≤ M.

Theorem (Existence of an optimal control for (P))

If l is convex w.r.t. u, then the problem (P) has at least one optimal solution ū.
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Differentiability of the objective functional

Let the ’standard’ assumptions on the second order differentiability of a, f, L and l
hold.

The functional J : L∞(Γ)→ R is of class C 2 and for every u, v , v1, v2 ∈ L∞(Γ), it
holds

J ′(u)v =

∫
Γ

(
∂l

∂u
(x , yu, u) + ϕu

)
v dσ(x)

J ′′(u)v1v2 =

∫
Γ

{
∂2l

∂y 2
(x , yu, u)zv1zv2 +

∂2l

∂y∂u
(x , yu, u)(zv1v2 + zv2v1)

+
∂2l

∂u2
(x , yu, u)v1v2

}
dσ(x) +

∫
Ω

[
∂2L

∂y 2
(x , yu)− ϕu

∂2f

∂y 2
(x , yu)

]
zv1zv2 dx

−
∫

Ω

∇ϕu ·
[
∂2a

∂y 2
(x , yu)zv1zv2∇yu +

∂a

∂y
(x , yu) (zv1∇zv2 + zv2∇zv1 )

]
dx ,

where zvi = G ′(u)vi , is the solution of (2) for y = yu and v = vi , i = 1, 2,...
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... ϕu ∈W 1,p(Ω), is the unique solution of the adjoint equation
− div[a(x , yu)∇ϕ] +

∂a

∂y
(x , yu)∇ϕ·∇yu +

∂f

∂y
(x , yu)ϕ =

∂L

∂y
(x , yu) in Ω ,

[a(x , yu)∇ϕ]· ~n(x) =
∂l

∂y
(x , yu, u) on Γ .
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First order necessary optimality conditions

The first order necessary optimality conditions can be deduced by using the
inequality J ′(ū)(u − ū) ≥ 0 and the differentiability of J.

Theorem

If ū is a local minimum of (P), then there exists ϕ̄ ∈W 1,p(Ω) such that
− div[a(x , ȳ)∇ϕ̄(x)] +

∂a

∂y
(x , ȳ)∇ϕ̄·∇ȳ +

∂f

∂y
(x , ȳ)ϕ̄ =

∂L

∂y
(x , ȳ) in Ω ,

[a(x , ȳ)∇ϕ̄]· ~n(x) =
∂l

∂y
(x , ȳ , ū) on Γ ,

∫
Γ

(
∂l

∂u
(x , ȳ , ū) + ϕ̄(x)

)
(u(x)− ū(x)) dσ(x) ≥ 0 for all ua ≤ u ≤ ub ,

where ȳ is the state associated to ū.
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Necessary and sufficient second order optimality conditions

Theorem

If ū is a local solution for (P), then J ′′(ū)v 2 ≥ 0 holds for all v ∈ Cū, where

Cū :=

h ∈ L2(Γ)
∣∣∣ h(x)


≥ 0 if ū(x) = ua(x)

≤ 0 if ū(x) = ub(x)

= 0 if ∂l
∂u

(x , ȳ , ū) + ϕ̄(x) 6= 0

for a.e. x ∈ Γ

 .

Conversely, if ū is a feasible control for problem (P) satisfying the first order
necessary conditions and

J ′′(ū)v 2 > 0 ∀v ∈ Cū\{0} ,

then there exist ε > 0 and δ > 0 such that

J(ū) +
δ

2
‖u − ū‖2

L2(Γ) ≤ J(u)

for every feasible control u for (P), with ‖u − ū‖L∞(Γ) ≤ ε.

I The gap between the second order necessary and sufficient optimality
conditions is minimal.
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Numerical example

The following specifications satisfy all assumptions made above:

Ω = (0, π)2 ,

a(x , y) = 1 + (x1 + x2)2 + y 2 ,

f(x , y) = 2(sin2(x1) + sin2(x2))y + g(x) (g ∈ Lq(Ω)) ,

L(x , y) =
1

2
(y − yΩ(x))2 (yΩ ∈ Lq(Ω)) ,

l(x , y , u) =
λ

2
u2 + η(x)u (η ∈ L2(Γ), λ ≥ 0) .
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For a particular choise of g , yΩ, η and λ, the functions

ȳ(x) = ȳ(x1, x2) = sin(x1) sin(x2) , ϕ̄(x) ≡ 1 and ū(x) = Proj[−20,−2]{e(x)} ,
e(x) = e(x1, x2) = −(1 + (x1 + x2)2)(sin(x1) + sin(x2)) ,

satisfy the first order necessary optimality conditions for the problem

(P)



min J(u) =

∫
Ω

L(x , y) dx +

∫
Γ

l(x , y , u) dσ(x)

s.t. u ∈ {v ∈ L∞(Γ) | − 20 ≤ v(s) ≤ −2 a.e. s ∈ Γ}

and

{
− div[a(x , y)∇y ] = −f(x , y) in Ω ,

a(x , y)∇y ·~n(x) = u(x) + min{0, e(x) + 20} −max{0, e(x) + 2} on Γ .
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Numerical example

The second order sufficient condition holds for arbitrary non-zero v ∈ L2(Γ) and
zv ∈ H1(Ω) given by (2):

J′′(ū)v2 =

∫
Γ

{
∂2l

∂y2
(x , ȳ , ū)z2

v + 2
∂2l

∂u∂y
(x , ȳ , ū)vzv +

∂2l

∂u2
(x , ȳ , ū)v2

}
dσ(x)

+

∫
Ω

{[
∂2L

∂y2
(x , ȳ)− ϕ̄

∂2f

∂y2
(x , ȳ)

]
z2
v −∇ϕ̄·

[
∂2a

∂y2
(x , ȳ)z2

v∇ȳ + 2
∂a

∂y
(x , ȳ)zv∇zv

]}
dx

=

∫
Γ
v2 dσ(x) +

∫
Ω

z2
v dx > 0 .
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Thank you for your attention!
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