On second order sufficient optimality conditions for quasilinear elliptic boundary control problems

Vili Dhamo

Joint work with Eduardo Casas

Workshop on PDE Constrained Optimization of Certain and Uncertain Processes 2009

05 June 2009

Vili Dhamo (TU Berlin) [Optimal control of quasilinear elliptic equations](#page-18-0) 05 June 2009 1 / 18

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Outline

- ² [Study of the quasilinear equation](#page-4-0)
- ³ [First- and second-order optimality conditions](#page-8-0)

⁴ [A numerical example](#page-14-0)

舌

 299

メロトメ 御下 メミトメ

Outline

[Problem setting](#page-2-0)

- [Study of the quasilinear equation](#page-4-0)
- [First- and second-order optimality conditions](#page-8-0)

[A numerical example](#page-14-0)

メロト メ御 トメ きょ メきょ

Problem setting

Consider the following optimal control problem

$$
(P) \left\{\begin{array}{l}\min J(u) = \int_{\Omega} \mathbf{L}(x, y_u(x)) dx + \int_{\Gamma} \mathbf{I}(s, y_u(s), u(s)) d\sigma(x), \\ \text{s.t.} \qquad u_a(s) \le u_b(s) \text{ for a.e. } s \in \Gamma \qquad (u_a, u_b \in L^{\infty}(\Gamma)),\end{array}\right.
$$

where y_{μ} is the solution of the quasilinear elliptic equation

$$
\begin{cases}\n-\operatorname{div}[\mathbf{a}(x, y(x))\nabla y(x)] + \mathbf{f}(x, y(x)) = 0 & \text{in } \Omega, \\
\mathbf{a}(x, y(x))\nabla y(x) \cdot \vec{n}(x) = u(x) & \text{on } \Gamma.\n\end{cases}
$$
\n(1)

 Ω is an open convex bounded polygonal set of \mathbb{R}^2 with boundary Γ.

Which assumptions on a and f yield the well-posedness of the state equation?

 Ω

K ロ ト K 何 ト K ヨ ト K

Outline

[Problem setting](#page-2-0)

2 [Study of the quasilinear equation](#page-4-0)

³ [First- and second-order optimality conditions](#page-8-0)

⁴ [A numerical example](#page-14-0)

 299

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶

Study of the quasilinear equation

'Basic' Assumptions:

1 a(\cdot , 0) $\in L^{\infty}(\Omega)$, a is locally Lipschitz continuous in y and

 $\exists \alpha_a > 0$ such that $\mathbf{a}(x, y) \ge \alpha_a$ for a.e. $x \in \Omega$ and all $y \in \mathbb{R}$.

2 (i) $f(x, \cdot)$ is monotone non-decreasing for a.a. $x \in \Omega$, for every $M > 0$ there exists $\psi_M\in L^q(\Omega)$ $(q\geq \frac{2p}{p+2},p>2)$ such that $\mathbf{f}(x,y)\leq \psi_M(x)$ for a.e. $x \in \overline{\Omega}$ and all $|y| \leq M$. $\textrm{(ii)}\;\;\exists\alpha_f>0$ and $E\subset\Omega,$ with $|E|>0,$ such that $\dfrac{\partial \textbf{f}}{\partial y}(x,y)\geq\alpha_f$ for all $(x, y) \in E \times \mathbb{R}$.

 \blacktriangleright Main difficulty: The state equation is non-monotone.

Example

$$
\begin{cases}\n-\text{div}\left[(\phi_0(x)+y^2)\nabla y\right] + \exp(y) = 0 & \text{in } \Omega, \\
(\phi_0(x)+y^2)\nabla y \cdot \vec{n} = u & \text{on } \Gamma, \quad (\phi_0 \in C(\bar{\Omega}), \ \phi_0 \ge \alpha > 0).\n\end{cases}
$$

 Ω

メロメ メ御 メメ きょくきょ

Existence and uniqueness of a solution to (1)

Theorem

- For any $u \in L^{s}(\Gamma)$, $s > 1$, the state equation [\(1\)](#page-3-0) has a unique solution $y_u \in H^1(\Omega) \cap C^\mu(\bar{\Omega})$ for some $\mu \in (0,1)$ independent of $u.$
- If a is continuous on $\overline{\Omega}\times\mathbb{R}$, then there exists

$$
p_0 \geq \frac{6}{3-\sqrt{5}} \approx 7.854
$$

such that for any $u \in L^{p/2}(\Gamma)$, $p \in (2, p_0]$, the solution $y_u \in W^{1,p}(\Omega)$.

- \blacktriangle Reduction from the variable coefficient case to the constant coefficient case (Method by Dauge [\[1\]](#page-6-0)).
- If the Lipschitz property of a w.r.t. y fails the uniqueness of a solution to (1) is not guaranteed.

M. Dauge, Neumann and mixed problems on curvilinear polyhedra. Integral Equations Oper. Theory, 15, No.2:227-261, 1992. メロト メ御 トメ ヨ トメ ヨト

 Ω

Differentiability of the control-to-state mapping

Linearization of the state equation around a solution y of (1) yields

$$
\begin{cases}\n-\operatorname{div}\left[\mathbf{a}(x,y)\nabla z(x)+\frac{\partial \mathbf{a}}{\partial y}(x,y)z\nabla y\right]+\frac{\partial \mathbf{f}}{\partial y}(x,y)z=0 & \text{in }\Omega, \\
\left[\mathbf{a}(x,y)\nabla z(x)+\frac{\partial \mathbf{a}}{\partial y}(x,y)z(x)\nabla y\right]\cdot\vec{n}(x)=v(x) & \text{on }\Gamma.\n\end{cases}\n\tag{2}
$$

- Given $y \in W^{1,p}(\Omega)$ for any $v \in H^{-1/2}(\Gamma)$ the linearized equation [\(2\)](#page-7-0) has a unique solution $z_v \in H^1(\Omega)$.
- If a is continuous on $\bar{\Omega} \times \mathbb{R}$, then there exists $p_0 \geq \frac{6}{3}$ $rac{6}{3-\sqrt{5}}$ such that for $p \in (2, p_0]$ the control-to-state mapping

$$
G: L^{p/2}(\Gamma) \to W^{1,p}(\Omega), G(u) = y_u, \text{ is of class } C^1
$$

and for any $v\in L^{p/2}(\Gamma)$ the function $z_{v}=G'(u)v$ is the unique solution in $W^{1,p}(\Omega)$ of [\(2\)](#page-7-0) at $y = y_u$.

 Ω

メロメ メ部 メメ きょうくきょう

[Problem setting](#page-2-0)

- ² [Study of the quasilinear equation](#page-4-0)
- ³ [First- and second-order optimality conditions](#page-8-0)

⁴ [A numerical example](#page-14-0)

 299

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶

Existence of a solution for problem (P)

Assume that

4 a is continuous on $\overline{\Omega} \times \mathbb{R}$.

 \bullet for any $M>0,$ there exist functions $\psi_{I,M}\in L^1(\Gamma),\ \psi_{L,M}\in L^1(\Omega)$ such that

 $|\mathsf{L}(x, y)| \leq \psi_{\mathsf{L},M}(x)$ and $|\mathsf{I}(s, y, u)| \leq \psi_{\mathsf{L},M}(s)$,

for a.e.
$$
x \in \Omega
$$
, $s \in \Gamma$ and $|y|, |u| \leq M$.

Theorem (Existence of an optimal control for (P))

If I is convex w.r.t. u, then the problem (P) has at least one optimal solution \bar{u} .

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Differentiability of the objective functional

Let the 'standard' assumptions on the second order differentiability of a, f, L and I hold.

The functional $J:L^\infty(\Gamma)\to\mathbb R$ is of class C^2 and for every $u,v,\nu_1,\nu_2\in L^\infty(\Gamma)$, it holds

$$
J'(u)v = \int_{\Gamma} \left(\frac{\partial l}{\partial u}(x, y_u, u) + \varphi_u \right) v d\sigma(x)
$$

\n
$$
J''(u)v_1v_2 = \int_{\Gamma} \left\{ \frac{\partial^2 l}{\partial y^2}(x, y_u, u) z_{v_1} z_{v_2} + \frac{\partial^2 l}{\partial y \partial u}(x, y_u, u) (z_{v_1} v_2 + z_{v_2} v_1) + \frac{\partial^2 l}{\partial u^2}(x, y_u, u) v_1 v_2 \right\} d\sigma(x) + \int_{\Omega} \left[\frac{\partial^2 \mathbf{L}}{\partial y^2}(x, y_u) - \varphi_u \frac{\partial^2 \mathbf{f}}{\partial y^2}(x, y_u) \right] z_{v_1} z_{v_2} dx - \int_{\Omega} \nabla \varphi_u \cdot \left[\frac{\partial^2 \mathbf{a}}{\partial y^2}(x, y_u) z_{v_1} z_{v_2} \nabla y_u + \frac{\partial \mathbf{a}}{\partial y}(x, y_u) (z_{v_1} \nabla z_{v_2} + z_{v_2} \nabla z_{v_1}) \right] dx,
$$

where $z_{v_i} = G'(u)v_i$, is the solution of [\(2\)](#page-7-0) for $y = y_u$ and $v = v_i$, $i = 1, 2,...$

 Ω

イロト イ部 トイモト イモト

 \ldots $\varphi_{\pmb{\nu}} \in W^{1,p}(\Omega)$, is the unique solution of the *adjoint equation*

$$
\begin{cases}\n-\operatorname{div}[\mathbf{a}(x,y_u)\nabla\varphi] + \frac{\partial \mathbf{a}}{\partial y}(x,y_u)\nabla\varphi \cdot \nabla y_u + \frac{\partial \mathbf{f}}{\partial y}(x,y_u)\varphi = \frac{\partial \mathbf{L}}{\partial y}(x,y_u) & \text{in } \Omega, \\
\qquad \qquad [\mathbf{a}(x,y_u)\nabla\varphi] \cdot \vec{n}(x) = \frac{\partial \mathbf{L}}{\partial y}(x,y_u,u) & \text{on } \Gamma.\n\end{cases}
$$

 299

イロト イ部ト イ君ト イ君)

First order necessary optimality conditions

The first order necessary optimality conditions can be deduced by using the inequality $J'(\bar u)(u-\bar u)\geq 0$ and the differentiability of $J.$

Theorem

If ū is a local minimum of (P), then there exists $\bar{\varphi}\in W^{1,p}(\Omega)$ such that

$$
\begin{cases}\n-\operatorname{div}[\mathbf{a}(x,\bar{y})\nabla\bar{\varphi}(x)] + \frac{\partial \mathbf{a}}{\partial y}(x,\bar{y})\nabla\bar{\varphi}\cdot\nabla\bar{y} + \frac{\partial \mathbf{f}}{\partial y}(x,\bar{y})\bar{\varphi} = \frac{\partial \mathbf{L}}{\partial y}(x,\bar{y}) & \text{in } \Omega, \\
\left[\mathbf{a}(x,\bar{y})\nabla\bar{\varphi}\right] \cdot \vec{n}(x) = \frac{\partial \mathbf{I}}{\partial y}(x,\bar{y},\bar{u}) & \text{on } \Gamma,\n\end{cases}
$$

$$
\int_{\Gamma}\left(\frac{\partial \mathbf{I}}{\partial u}(x,\bar{y},\bar{u})+\bar{\varphi}(x)\right)(u(x)-\bar{u}(x))\,d\sigma(x)\geq 0\quad\text{for all}\quad u_a\leq u\leq u_b\,,
$$

where \bar{y} is the state associated to \bar{u} .

 Ω

メロト メ御 トメ きょ メきょ

Necessary and sufficient second order optimality conditions

Theorem

If \bar{u} is a local solution for (P) , then $J''(\bar{u})v^2\geq 0$ holds for all $v\in\mathcal{C}_{\bar{u}}$, where

$$
C_{\bar{u}} := \left\{ h \in L^{2}(\Gamma) \middle| h(x) \begin{cases} \geq 0 & \text{if } \bar{u}(x) = u_{a}(x) \\ \leq 0 & \text{if } \bar{u}(x) = u_{b}(x) \\ = 0 & \text{if } \frac{\partial I}{\partial u}(x, \bar{y}, \bar{u}) + \bar{\varphi}(x) \neq 0 \end{cases} \text{ for a.e. } x \in \Gamma \right\}
$$

Conversely, if \bar{u} is a feasible control for problem (P) satisfying the first order necessary conditions and

$$
J''(\bar{u})v^2 > 0 \qquad \forall v \in C_{\bar{u}} \backslash \{0\},
$$

then there exist $\epsilon > 0$ and $\delta > 0$ such that

$$
J(\bar{u})+\frac{\delta}{2}\|u-\bar{u}\|_{L^2(\Gamma)}^2\leq J(u)
$$

for every feasible control u for (P) , with $||u - \bar{u}||_{L^{\infty}(\Gamma)} \leq \epsilon$.

 \triangleright The gap between the second order necessary and sufficient optimality conditions is minimal.

 Ω

メロト メ御 トメ きょ メきょ

.

[Problem setting](#page-2-0)

- ² [Study of the quasilinear equation](#page-4-0)
- ³ [First- and second-order optimality conditions](#page-8-0)

⁴ [A numerical example](#page-14-0)

 299

メロト メ御 トメ きょ メきょ

The following specifications satisfy all assumptions made above:

$$
\begin{cases}\n\Omega = (0, \pi)^2, \\
\mathbf{a}(x, y) = 1 + (x_1 + x_2)^2 + y^2, \\
\mathbf{f}(x, y) = 2(\sin^2(x_1) + \sin^2(x_2))y + g(x) \\
\mathbf{L}(x, y) = \frac{1}{2}(y - y_0(x))^2 \\
\mathbf{L}(x, y, u) = \frac{\lambda}{2}u^2 + \eta(x)u\n\end{cases}\n\quad (g \in L^q(\Omega)),
$$
\n
$$
(y_0 \in L^q(\Omega)),
$$
\n
$$
(\eta \in L^2(\Gamma), \lambda \ge 0).
$$

 299

メロメ メ御 メメ きょくき

For a particular choise of g, y_{Ω} , η and λ , the functions

$$
\bar{y}(x) = \bar{y}(x_1, x_2) = \sin(x_1)\sin(x_2), \ \bar{\varphi}(x) \equiv 1 \quad \text{and} \quad \bar{u}(x) = \text{Proj}_{[-20, -2]} \{e(x)\},
$$

$$
e(x) = e(x_1, x_2) = -(1 + (x_1 + x_2)^2)(\sin(x_1) + \sin(x_2)),
$$

satisfy the first order necessary optimality conditions for the problem

$$
(P)\begin{cases}\n\min J(u) = \int_{\Omega} \mathbf{L}(x, y) dx + \int_{\Gamma} I(x, y, u) d\sigma(x) \\
\text{s.t. } u \in \{v \in L^{\infty}(\Gamma) \mid -20 \le v(s) \le -2 \text{ a.e. } s \in \Gamma\} \\
\text{and } \begin{cases}\n-\operatorname{div}[\mathbf{a}(x, y) \nabla y] = -\mathbf{f}(x, y) & \text{in } \Omega, \\
\mathbf{a}(x, y) \nabla y \cdot \vec{n}(x) = u(x) + \min\{0, e(x) + 20\} - \max\{0, e(x) + 2\} & \text{on } \Gamma.\n\end{cases}
$$

 QQ

メロメ メ御 メメ きょくき

Numerical example

The second order sufficient condition holds for arbitrary non-zero $v\in L^2(\Gamma)$ and $z_v \in H^1(\Omega)$ given by [\(2\)](#page-7-0):

$$
J''(\bar{u})v^2 = \int_{\Gamma} \left\{ \frac{\partial^2 \mathbf{I}}{\partial y^2} (x, \bar{y}, \bar{u}) z_v^2 + 2 \frac{\partial^2 \mathbf{I}}{\partial u \partial y} (x, \bar{y}, \bar{u}) v z_v + \frac{\partial^2 \mathbf{I}}{\partial u^2} (x, \bar{y}, \bar{u}) v^2 \right\} d\sigma(x) + \int_{\Omega} \left\{ \left[\frac{\partial^2 \mathbf{L}}{\partial y^2} (x, \bar{y}) - \bar{\varphi} \frac{\partial^2 \mathbf{f}}{\partial y^2} (x, \bar{y}) \right] z_v^2 - \nabla \bar{\varphi} \cdot \left[\frac{\partial^2 \mathbf{a}}{\partial y^2} (x, \bar{y}) z_v^2 \nabla \bar{y} + 2 \frac{\partial \mathbf{a}}{\partial y} (x, \bar{y}) z_v \nabla z_v \right] \right\} dx = \int_{\Gamma} v^2 d\sigma(x) + \int_{\Omega} z_v^2 dx > 0.
$$

Vili Dhamo (TU Berlin) [Optimal control of quasilinear elliptic equations](#page-0-0) 05 June 2009 17 / 18

 299

Thank you for your attention!

 QQ

メロメ メタメ メミメス