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Introduction
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Standard Parametric Paradigm: State of the Art

Chose fixed geometry
parametrization q ∈ Rnq

Results in finite dimensional
NLP:

min
q

F`(u(q),q)

Gradient given by formal
Lagrangian for finite
dimensional problem:

dF`

dq
(u(q),q) =

∂F`

∂q
− λT ∂c

∂q[
∂c
∂u

]T

λ =
∂F`

∂u
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Standard Parametric Paradigm: State of the Art

Pros:
Easy to realize (given adjoint solver)
Small optimization

simulation for low dimensions (one-shot/SAND, ...)

Cons:
Shape structure fixed
Bad scaling with number of unknowns
Mesh Sensitivity ∂c

∂q deteriorates with number of design variables

dF`

dq
(u(q),q) =

∂F`

∂q
− λT ∂c

∂q

Solution: Exploit Shape Optimization problem structure!
Wall-Clock-Time reduced by 99% (2D opt: 2.77h vs. 100s, 3D grad:
2.5d vs. 60s)!
Stephan Schmidt (University of Trier) Large Scale Aerodynamic Shape Optimization June 4, 2009 5 / 23



The Hadamard Theorem

Under some regularity assumptions there exists a scalar distribution
G(Γ) with support on Γ such that

dJ(Ω)[V ] = 〈G(Γ), 〈V ,n〉〉 =

∫
Γ

〈V ,n〉 g dS

Shape Derivative is a scalar product with direction 〈V ,n〉
One evaluation of g per mesh node

Shape Derivative with Hadamard Theorem

J(Ω) =

∫
Γ

h dλn−1

dJ(Ω)[V ] =

∫
Γ

〈V (0),n〉
[
∂h
∂n

+ κ h
]

dλn−1
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Observations

Pros:
Gradient computation independent of design parameters! No
mesh sensitivities
No a priory geometry structure
Mesh hierarchy defines shape hierarchy
No mesh deformation, works with any PDE/flow solver

Cons:
Iterate Ωk can only be expressed in terms of Ωk−1
No design vector: Ωk 6= Ω0(qk ) for qk ∈ Rn

No NLP structure!
Loss of regularity limits step length
Hessian update formulas? One-shot?
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Model Problems for Shape Hessians

Objective

min
(u,p,Ω)

Ė(u,Ω) :=
1
2

∫
Ω

ν

3∑
j,k=1

(
∂uk

∂xj

)2

dA

Constraints
a) Stokes Equation

−ν∆u +∇p = 0
div u = 0

b) Navier-Stokes Equation

−ν∆u + ρu∇u +∇p = 0
div u = 0

+ volume constraint
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First Order Shape Calculus

a) Stokes

dĖS(u,Ω)[V ] =

∫
Γ

〈V ,n〉

[
−ν

3∑
k=1

(
∂uk

∂n

)2
]

dS

b) Navier-Stokes

dĖNS(u,Ω)[V ] =

∫
Γ

〈V ,n〉

[
−ν

3∑
k=1

(
∂uk

∂n

)2

− ∂uk

∂n
∂λk

∂n

]
dS

−ν∆λ− ρλ∇u − ρ (∇λ)T u +∇λp = −2∆u in Ω
div λp = 0 in Ω
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Second Order Shape Calculus

d2ĖS(u,Ω)[V ,W ] = I1 + I2
where

I1 =

∫
Γ

〈W ,n〉

div V

−ν 3∑
i,j=1

(
∂ui

∂xj

)2
+ VΓ∇

−ν 3∑
i,j=1

(
∂ui

∂xj

)2
dS

I2 =

∫
Γ

〈V ,n〉

[
2ν

3∑
i=1

∂ui

∂n
S
(
∂ui

∂n
〈W ,n〉

)]

+ 〈W ,n〉〈V ,n〉 ∂
∂n

−ν 3∑
i,j=1

(
∂ui

∂xj

)2
 dS

Divergence-free Poincaré-Steklov operator S
I1 hard to discretize
I2 has nullspace away from optimum
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Symbol of an Operator

Suppose Fourier disturbance (oscillation) of design: q̃(x) = eiωx

First order differential operator: Hq̃ = iωq̃
Second order differential operator: Hq̃ = −ω2q̃
Dirichlet to Neumann Map / Poincaré-Steklov: Hq̃ = |ω|q̃

Stokes (analytic) / Navier-Stokes (frequency analysis):

Hq̃ = (β · |ω|+ γ)q̃

Approximation:

H̃ = −α∆Γ + id
Symbol: 1 + αω2

α chosen to match boundary discretization
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Navier-Stokes: Initial and Optimal Domain
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Performance: Navier-Stokes
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Optimum in iteration 71 vs 350: 80% less iterations
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Euler Drag Reduction

Minimize Wave Drag

min
(u,Ω)

J(u,Ω) :=

∫
Γ

〈p`,n〉 dS =

∫
Γ

p · n` dS

subject to

0 = A1(V )
∂U
∂x1

+ A2(V )
∂U
∂x2

+ A3(V )
∂U
∂x3

in Ω

0 = 〈u,n〉 on Γ

u∞ = u on Γinflow

Euler Flux Jacobian: Ai(V )

Conserved variables: U = (ρ, ρu1, ρu2, ρu3, ρE)T

Primitive variables: V = (ρ,u1,u2,u3,p)T

Perfect gas: p = (γ − 1)ρ(E − 1
2(u2

1 + u2
2 + u2

3))
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Euler Gradient

Shape Derivative for Euler Drag Reduction

dF`(Ω)[V ] =

∫
Γ

〈V ,n〉 [〈∇p` n,n〉+ κ〈p`,n〉 − λUH〈Du · n,n〉]

+ (p` − λUHu)dn[V ] dS

=

∫
Γ

〈V ,n〉 [〈∇p` n,n〉 − λUH〈Du · n,n〉+ divΓ (p` − λUHu)]

Hessian Symbol: 2D: Hq̃ = −ω2q̃, 3D: Hq̃ = −ω2
1

ω2
q̃

MDO: Constraint on contour length and bending stiffness∫
Γ

dS ≤ L0,

∫
Γ

(y − yc)2 dS ≥ Ix0
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Optimized Shape: Supersonic

DLR Flow Solver TAU
Unstructured Finite
Volume
Mach 2.00
Initial NACA0012:
CD = 9.430 · 10−2

Optimal Haack Ogive:
CD = 4.721 · 10−2

Reduction by 49.9%

400 design parameters
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Optimization History: Wall-Clock-Time
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+ preconditioning

+ shape derivatives
+ one-shot (5 in.iter.)

Exploit shape optimization problem structure! Wall-clock time reduced
by 99% (2.77h vs. 100s)
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Optimized Shape: Transonic, Lifting

Initial NACA0012
Mach 0.73, AoA: 2◦

CD = 6.360 · 10−3

CL = 4.020 · 10−1

V = 8.1341 · 10−2

Constraints:
CL = 8.171 · 10−1

V = 8.223 · 10−2

Optimized, 60 Iterations:
CD = 3.347 · 10−3

CL = 8.174 · 10−1

V = 8.2185 · 10−2

200 Design Parameter
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3D Flying Wing Optimization: Onera M6

Shape State CD CL α M∞
M 1 18,285 541,980 1.057 · 10−2 2.761 · 10−1 3.01 0.83
M 2 36,806 1,486,315
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3D Flying Wing Optimization: Onera M6

Shape CD % CL %
M 1 18,285 7.52 · 10−3 −28.8% 2.65 · 10−1 −4.0% ≈ 1 mins
M 2 36,806 7.27 · 10−3 −29.7% 2.65 · 10−1 −4.1% ≈ 3 mins
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3D Results

Stephan Schmidt (University of Trier) Large Scale Aerodynamic Shape Optimization June 4, 2009 21 / 23


cutrun.mp4
Media File (video/mp4)



Multilevel Convergence History
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Outlook and Future Work

Summary:
Good Hessian approximation results in equation optimization

simulation ≈ 2.5
Knowledge of Hessian symbol has potential for mesh independent
performance
Structure exploitation CPU wall-clock time improvements:

Shape Hessian: 88%
Shape derivative: 75%

Outlook:
3D RANS-equation with turbulence modeling
Fuselage
GPU-solver
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