Aerodynamic Shape Optimization under Uncertainty

Volker Schulz, Claudia Schillings

GAMM Activity Group on Optimization with PDE Constraints Workshop on PDE Constrained Optimization of Certain and Uncertain Processes 2009 Trier, June 3-5, 2009

Outline

- Motivation
- 2 Uncertainties
- 8 Robust Design
- 4 Scalar-valued uncertainties
- **5** Geometry uncertainties
- 6 Conclusions and further work

(< ∃) < ∃)</p>

< 🗇 ▶

Motivation

• Aerodynamic performance of an airplane is very sensitive to the wing shape and flight conditions

optimality and robustness of performance against any uncertainties

• The resulting optimization tasks become much more complex than in the usual single setpoint case

\longrightarrow Development of efficient and fast algorithms

イロト イポト イヨト イヨト

Uncertainty sources

Uncertainties with respect to the flight conditions

- Mach number
- angle of attack
- density
- Reynolds number

Geometry uncertainties

・ 同 ト ・ ヨ ト ・ ヨ ト

Uncertainty modeling

scalar-valued uncertainties

- real-valued, continuous random variable s : Ω → ℝ defined on a probability space (Ω, Y, P)
- characterized by a probability density function $\varphi:\mathbb{R}\to\mathbb{R}_+$

spatially distributed uncertainties

- random field $s: \Gamma \times \Omega \to \mathbb{R}$ defined on a probability space (Ω, Y, P)
- determined by its second-order statistics, i.e. by its mean and by its covariance function

ヘロト ヘアト ヘビト ヘビト

Robust Design

single setpoint aerodynamic shape optimization problem

$$\min_{y,p} f(y,p)$$

s.t. $c(y,p) = 0$
 $h(y,p) \ge 0$

one-shot approaches, e.g in [Gherman, Schulz 2007]

イロト イポト イヨト イヨト

optimization problem influenced by stochastic perturbations $s:\Omega\to\mathbb{R},\,\zeta\in\Omega$

$$\min_{y,p} f(y,p,\zeta)$$

s.t. $c(y,p,\zeta) = 0$
 $h(y,p,\zeta) \ge 0$

- min-max formulation (not discussed here)
- semi-infinite formulation
- chance-constraint formulation

ヘロン 人間 とくほ とくほ とう

3

semi-infinite formulation (cf. Marti 2005)

optimizing the average objective function

$$\min_{y,p} \int_{\Omega} f(y,p,\zeta) d\mathcal{P}(\zeta)$$

s.t. $c(y,p,\zeta) = 0, \ \forall \zeta \in \Omega$
 $h(y,p,\zeta) \ge 0, \ \forall \zeta \in \Omega$

Volker Schulz, Claudia Schillings Aerodynamic Shape Optimization under Uncertainty

・ 同 ト ・ ヨ ト ・ ヨ ト

semi-infinite formulation

discretization leads to

$$\min_{y_{i,p}} \sum_{i=1}^{N} f(y_i, p, s_i) \omega_i$$

s.t. $c(y_i, p, s_i) = 0, \forall i \in \{1, \dots, N\}$
 $h(y_{min}, p, s_{min}) \ge 0$

ヘロト ヘワト ヘビト ヘビト

ъ

Optimization strategy

cf.[Bock, Egartner, Kappis, Schulz 2002]

chance-constraint formulation (cf. Prekopa 1970, Henrion 2007)

inequality constraint hold with a certain probability \mathcal{P}_0

$$\min_{y,p} \int_{\Omega} f(y,p,\zeta) d\mathcal{P}(\zeta)$$

s.t. $c(y,p,\zeta) = 0, \ \forall \zeta \in \Omega$
 $\mathcal{P}(\{\zeta \mid h(y,p,\zeta) \ge 0\}) \ge \mathcal{P}_0$

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

linearized chance-constraint formulation

Taylor-series approximation gives

$$\begin{split} \min_{p} f(y(p,s^{0}),s^{0}) &+ \frac{1}{2} \frac{\partial^{2} f(y(p,s^{0}),s^{0})}{\partial \zeta^{2}} Var(s) \\ \text{s.t.} \quad \mathcal{P}(\{\zeta \mid h(s^{0}) + \frac{\partial h(s^{0})}{\partial \zeta}(s(\zeta) - s^{0}) \geq 0\}) \geq \mathcal{P}_{0} \end{split}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Comparison of drag

イロン イロン イヨン イヨン

Comparison of lift

イロン イロン イヨン イヨン

Optimized airfoil

Volker Schulz, Claudia Schillings Aerodynamic Shape Optimization under Uncertainty

イロト イポト イヨト イヨ

Geometry uncertainties

Description of the geometry uncertainties

$$h(x,\omega) = x + s(x,\omega) \cdot \vec{n}(x) \qquad \forall x \in \Gamma, \omega \in Q$$

Assumptions on the random field $s(x, \omega)$

•
$$\mathbb{E}(s(x,\zeta)) = s_0(x) = 0$$

•
$$Cov(x,y) = b^2 \cdot \exp\left(-\frac{\|x-y\|^2}{l^2}\right) \quad \forall x, y \in \Gamma$$

ヘロト ヘワト ヘビト ヘビト

Karhunen-Loève Expansion

truncated Karhunen-Loève Expansion

$$s_{N}(x,\omega) = s_{0}(x) + \sum_{j=1}^{N} \sqrt{\lambda_{j}} z_{j}(x) Y_{j}(\omega)$$

with λ_j eigenvalue, $z_j(x)$ eigenfunction of *Cov*

i.e.
$$\int_{\Gamma} Cov(x, y) z_j(y) dy = \lambda_j z_j(x), \qquad x \in \Gamma$$

error analysis

$$\lim_{N \to \infty} \left\{ \sup_{\Gamma} \int_{\mathcal{Q}} (s - s_N)^2 \, d\mathcal{P}(\omega) \right\} = \lim_{N \to \infty} \left\{ \sup_{\Gamma} \left(\sum_{j=N+1}^{\infty} \lambda_j z_j^2 \right) \right\}$$

Aerodynamic Shape Optimization under Uncertainty

Geometries

Eigenvalues

Eigenvectors

one perturbed geometry

adaptive choice of the stochastic ansatz space

goal-oriented choice of the Karhunen-Loève basis \rightarrow gradient based indicator

- Estimation of the approximation error using derivatives
- Error indicator for the individual eigenvectors
- automatic selection of the reduced basis

(同) くほり くほう

Importance of the individual basis vectors for the target functional

Volker Schulz, Claudia Schillings Aerodynamic Shape Optimization under Uncertainty

ъ

Sparse grid

Smolyak-Algorithm

Idea: Combination of quadrature formulas of high order in only some dimensions and formulas of lower order in the other dimensions

$$Q(k,d) = \sum_{|\mathbf{i}| \le k} \Delta^{(i_1)} \otimes \cdots \otimes \Delta^{(i_d)}$$

 $Q^{(1)}, Q^{(2)}, \dots$ sequence of quadrature formulas

$$\begin{aligned} \Delta^{(i)} &= Q^{(i+1)} - Q^{(i)} \\ \mathbf{i} &= (i_1, ..., i_d), \quad |\mathbf{i}| = \sum_{\nu=1}^d i_\nu \end{aligned}$$

adaptive Sparse grid

cf.[Garcke, Griebel 2001] automatic detection of important dimensions

\rightarrow local refinement

Drag performance of perturbed shapes

Lift performance of perturbed shapes

Optimized airfoil

Comparison of the robust shape and the shape resulting from the single setpoint optimization

Conclusions and further work

- several approaches to robust design under stochastic uncertainties are discussed
- the discretized semi-infinite approach seems most promising so far
- the very high dimensional optimization tasks are efficiently approached by the use of adaptive sparse grids and efficient parallelization of one-shot methods
- applying of the introduced methods to a 3D test case

・ 同 ト ・ ヨ ト ・ ヨ ト