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Motivation
I Devices in which only a small part of

the shape should be changed.
Ω̄(α) := Ω̄1 ∪ Ω̄2(α), Ω1 ∩ Ω2(α) = ∅.
The domain we want to optimize
Ω2(α) is small.

I Use domain decomposition to explore
problem structure in shape
optimization.
Nonlinearity due to shape variation is
localized in small subdomain Ω2(α).

I Use Model Reduction to reduce the
linear subproblem corresponding to
subdomain Ω1.

I Need to optimize potentially much
smaller system that approximates the
original, large system.

I Can handle other localized
nonlinearities in the PDE in a similar
manner.

Biochip
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Reduced-Order Dynamical Systems

ẏ(t) = Ay(t) + Bu(t)
z(t) = Cy(t)

ẏ(t) = f(y(t),u(t), t)
z(t) = g(y(t), t)

Replace y(t) ∈ RN by Vŷ(t) =
∑n
i=1 viŷi(t), ŷ ∈ Rn where n� N

and multiply the state equation by WT .

˙̂y =WTAVŷ +WTBu

ẑ = CVŷ

˙̂y =WT f(Vŷ,u)
ẑ = g(Vŷ)

Two main questions:

I Accuracy of the reduced order model? Approximation of the
input-to-output map u 7→ z.

I Efficiency of the reduced order model?
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Projection Based Model Reduction Approaches

I Proper Orthogonal Decomposition (POD) or Karhunen Loeve (KL)
expansion

I Very often used, especially for nonlinear problems.
I Data driven.
I Quality of reduced order model limited by sampling of snapshots.

I Balanced Truncation Model Reduction.
I Theory and efficient algorithms for linear time invariant (LTI)

problems.
I Extensions to nonlinear problems proposed, but depend on sampling

and are missing theory at level available for LTI problems.

I Optimization Based Approach
I In theory applicable to large class of problems.
I Can be tailored to different measures of approximation.
I Ideal formulation is computationally intractable, approximate

variants exist.

I ....
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Review of Balanced Truncation Model Reduction
I Consider

d

dt
y(t) = Ay(t) + Bu(t), t ∈ (0, T )

z(t) = Cy(t) +Du(t), t ∈ (0, T )

y(0) = 0.

I Projection methods for model reduction produce n× k matrices V,W
with n� N and with WTV = In.

I One obtains a reduced form by setting y = Vby and projecting so that

WT [V d
dt
by(t)−AVby(t)− Bu(t)] = 0, t ∈ (0, T ).

I This leads to a reduced order system of order n given by

d

dt
by(t) = bAby(t) + bBu(t), t ∈ (0, T )

bz(t) = bCby(t) +Du(t), t ∈ (0, T )by(0) = 0.

with bA =WTAV, bB =WTB, and bC = CV.
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Controllability and Observability Gramians

I Recall

y′(t) = Ay(t) + Bu(t), t ∈ (0, T )

z(t) = Cy(t) +Du(t), t ∈ (0, T ).

Assume the system is stable (Re(λ(A)) < 0), controllable and observable.

I Controllability Gramian.

I P =

Z ∞
0

eAtB BT eA
T tdt.

I Eigenspaces corresponding to large eigenvalues are ‘easy’ to control
(control has smaller energy).

I Controllability Gramian solves the Lyapunov equation

AP + PAT + BBT = 0.

I Observability Gramian.

I Q =

Z ∞
0

eA
T tCT CeAtdt.

I Eigenspaces corresponding to large eigenvalues are ‘easy’ to observe.
I Observability Gramian solves the Lyapunov equation

ATQ+QA+ CT C = 0.
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I Compute controllability and observability gramians P,Q P = UUT and
Q = LLT in factored form, i.e., solve

AP + PAT + BBT = 0,

ATQ+QA+ CT C = 0.

I Compute the SVD UTL = ZSYT ,
where Sn = diag(σ1, σ2, . . . , σn) with S = SN , and σ1 ≥ σ2 ≥ . . ..

I Set V = UZnS
−1/2
n , W = LYnS

−1/2
n , where n is selected to be the

smallest positive integer such that σn+1 < τσ1. Here τ > 0 is a
prespecified constant. The matrices Zn,Yn consist of the corresponding
leading n columns of Z,Y.

I It is easily verified that PW = VSn and that QV =WSn.

I Hence

0 =WT (AP + PAT + BBT )W = bASn + Sn bAT + bB bBT ,
0 = VT (ATQ+QA+ CT C)V = bATSn + Sn bA+ bCT bC.
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Two important properties of balanced trunction model reduction:

I Â is stable

I For any given input u we have

‖z− ẑ‖L2 ≤ 2‖u‖L2(σn+1 + . . .+ σN )

where ẑ is the output (response) of the reduced model (Glover
1984).
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I Consider state system

y′(t) = Ay(t) + Bu(t), t ∈ (0, T )

z(t) = Cy(t) +Dsu(t), t ∈ (0, T )

and corresponding adjoint system

λ′(t) = ATλ(t) + Cw(t), t ∈ (0, T )

q(t) = BTλ(t) +Daw(t), t ∈ (0, T )

I Apply BTMR to compute V,W ∈ Rn×k, the reduced state system

d

dt
by(t) = bAby(t) + bBu(t), t ∈ (0, T )

bz(t) = bCby(t) +Dsu(t), t ∈ (0, T )

and the reduced adjoint system

d

dt
bλ(t) = bAT bλ(t) + bCTw(t), t ∈ (0, T )

bq(t) = bBT bλ(t) +Daw(t), t ∈ (0, T )

with bA =WTAV, bB =WTB, and bC = CV.

I Error bounds: For any given inputs u and w we have

‖z− bz‖L2 ≤ 2‖u‖L2(σn+1 + . . .+ σN ),

‖q− bq‖L2 ≤ 2‖w‖L2(σn+1 + . . .+ σN ).
M. Heinkenschloss 06/05/09 11



I Error bound holds if the system

d

dt
y(t) = Ay(t) + Bu(t), t ∈ (0, T )

z(t) = Cy(t) +Du(t), t ∈ (0, T )
y(0) = 0

has a homogeneous initial condition. For problems with
inhomogeneous initial conditions, balanced truncation can be
modified and a similar error bound can be proven (Antoulas/H./Reis
2009).
To keep the presentation simple, I assume homogeneous initial
conditions.

I Descriptor systems

E d
dt

y(t) = Ay(t) + Bu(t), t ∈ (0, T )

z(t) = Cy(t) +Du(t), t ∈ (0, T )
y(0) = 0

with symmetric positive definite E can be handled easily.
Transform the system y→ E1/2y, A → E−1/2AE−1/2, ...
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The Problem

I We consider optimal control problems governed by advection
diffusion equations

∂

∂t
y(x, t)−∇(k(x)∇y(x, t)) + V (x) · ∇y(x, t)) = f(x, t)

in Ω× (0, T ). The optimization variables are related to the right
hand side f or to boundary data.

I After (finite element) discretization in space the optimal control
problems are of the form

min J(u) ≡ 1
2

∫ T

0

‖Cy(t) + Du(t)− d(t)‖2dt,

where y(t) = y(u; t) is the solution of

My′(t) = Ay(t) + Bu(t), t ∈ (0, T ),
y(0) = y0.
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Optimality Conditions
I The necessary and sufficient optimality conditions are given by

My′(t) = Ay(t) + Bu(t), t ∈ (0, T ), y(0) = y0,

z(t) = Cy(t) + Du(t)− d(t), t ∈ (0, T )

−Mλ′(t) = ATλ(t) + CT z(t), t ∈ (0, T ), λ(T ) = 0,

q(t) = BTλ(t) + DT z(t), t ∈ (0, T )

q(t) = 0, t ∈ (0, T ).

This is exactly of the form to which BTMR can be applied!

I We use BTMR to compute W,V and the reduced optimality systemby′(t) = bAby(t) + bBu(t), t ∈ (0, T ) by(0) = by0,bz(t) = bCby(t) + Du(t)− d(t), t ∈ (0, T )

−bλ′(t) = bAT bλ(t) + bCTbz(t), t ∈ (0, T ) bλ(T ) = 0,bq(t) = bBT bλ(t) + DTbz(t), t ∈ (0, T )bq(t) = 0, t ∈ (0, T ),

with bA =WTAV, bB =WTB, bC = CV, and by0 =WTMy0.
We assume that y0 = 0.
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Reduced Problem
The reduced optimality system

by′(t) = bAby(t) + bBu(t), t ∈ (0, T ) by(0) = by0,bz(t) = bCby(t) + Du(t)− d(t), t ∈ (0, T )

−bλ′(t) = bAT bλ(t) + bCTbz(t), t ∈ (0, T ) bλ(T ) = 0,bq(t) = bBT bλ(t) + DTbz(t), t ∈ (0, T )bq(t) = 0, t ∈ (0, T ),

is the optimality system for the reduced optimal control problem

min bJ(u) ≡ 1

2

Z T

0

‖bCby(t) + Du(t)− d(t)‖2dt

where by(t) = by(u; t) solves

by′(t) = bAby(t) + bBu(t), t ∈ (0, T ),by(0) = by0.

Easy to see in this case (but not for other problems). Important to note, since

we do reduction on the optimality system, but numerically want to solve an

optimization problem!
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Error Analysis (Standard)
I Let u∗ be a minimizer of the original objective J and let û∗ be a

minimizer of the reduced objective Ĵ .
I Assume that J is a strictly convex quadratic function, i.e., that there

existents κ > 0 such that

〈u−w,∇J(u)−∇J(w)〉L2 ≥ κ‖u−w‖2L2 for all u,w ∈ L2.

I Set u = u∗ and w = û∗ and use

∇J(u∗) = ∇Ĵ(û∗) = 0

to get

‖u∗ − û∗‖L2‖∇Ĵ(û∗)−∇J(û∗)‖L2

= ‖u∗ − û∗‖L2‖∇J(u∗)−∇J(û∗)‖L2

≥ 〈u∗ − û∗,∇J(u∗)−∇J(û∗)〉L2 ≥ κ‖u∗ − û∗‖2L2 .

I Hence
‖u∗ − û∗‖L2 ≤ κ−1‖∇Ĵ(û∗)−∇J(û∗)‖L2 .

I Need to estimate error in the gradients to get estimate for error in
the solution.
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Gradient Computation

I For the original problem

My′(t) = Ay(t) + Bu(t), t ∈ (0, T ), y(0) = y0,

z(t) = Cy(t) + Du(t)− d(t), t ∈ (0, T )

−Mλ′(t) = ATλ(t) + CT z(t), t ∈ (0, T ), λ(T ) = 0,

∇J(u) = q(t) = BTλ(t) + DT z(t), t ∈ (0, T )

I For the reduced problem

ŷ′(t) = Âŷ(t) + B̂u(t), t ∈ (0, T ) ŷ(0) = ŷ0,

ẑ(t) = Ĉŷ(t) + Du(t)− d(t), t ∈ (0, T )

−λ̂
′
(t) = ÂT λ̂(t) + ĈT ẑ(t), t ∈ (0, T ) λ̂(T ) = 0,

∇Ĵ(u) = q̂(t) = B̂T λ̂(t) + DT ẑ(t), t ∈ (0, T )
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Gradient Computation
I For the original problem

My′(t) = Ay(t) + Bu(t), t ∈ (0, T ), y(0) = y0,

z(t) = Cy(t) + Du(t)− d(t), t ∈ (0, T )

−Mλ′(t) = ATλ(t) + CT z(t), t ∈ (0, T ), λ(T ) = 0,

∇J(u) = q(t) = BTλ(t) + DT z(t), t ∈ (0, T )

I For the original problem

ŷ′(t) = Âŷ(t) + B̂u(t), t ∈ (0, T ) ŷ(0) = ŷ0,

ẑ(t) = Ĉŷ(t) + Du(t)− d(t), t ∈ (0, T )

−λ̂
′
(t) = ÂT λ̂(t) + ĈT ẑ(t), t ∈ (0, T ) λ̂(T ) = 0,

∇Ĵ(u) = q̂(t) = B̂T λ̂(t) + DT ẑ(t), t ∈ (0, T )

I We can almost apply BTMR error bounds, but need same inputs w
in full and reduced order adjoint system.

I Easy to fix: Introduce auxiliary adjoint λ̃ as solution of the original
adjoint, but with input ẑ instead of z.
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Error Estimate

I Assume that there exists α > 0 such that

vTAv ≤ −αvTMv, ∀v ∈ RN .

For any u ∈ L2 let ŷ(u) be the corresponding reduced state and

ẑ(u) = Ĉŷ(u) + Du− d.
There exists c > 0 such that the error in the gradients obeys

‖∇J(u)−∇Ĵ(u)‖L2 ≤ 2 (c‖u‖L2 + ‖ẑ(u)‖L2) (σn+1 + . . .+ σN )

for all u ∈ L2!

I Consequently, the error between the solutions satisfies

‖u∗ − û∗‖L2 ≤ 2
κ

(c‖û∗‖L2 + ‖ẑ∗‖L2) (σn+1 + . . .+ σN ).
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Example Problem (Dede/Quarteroni 2005)

Minimize
1

2

Z T

0

Z
D

(y(x, t)− d(x, t))2dx dt+
10−4

2

Z T

0

Z
U1∪U2

u2(x, t)dx dt,

subject to

∂

∂t
y(x, t)−∇(k∇y(x, t)) + V(x) · ∇y(x, t)

= u(x, t)χU1(x) + u(x, t)χU2(x) in Ω× (0, 4),

with boundary conditions y(x, t) = 0 on ΓD × (0, 4), ∂
∂n
y(x, t) = 0 on

ΓN × (0, 4) and initial conditions y(x, 0) = 0 in Ω.1032 L. DEDE’ AND A. QUARTERONI
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Figure 4. Test 1. Reference domain for the control problem. We report the boundary condi-
tions for the advection–diffusion Equation (10) (a) and for the Stokes problem (64) (b).

where ρw
K , ρp

K and ρu
K are defined in Equations (55) and (61) (for the sake of simplicity, we have dropped the

apex (j) on the error indicators). Results are compared with those obtained on fine grids, that we consider an
accurate guess of the exact solution.

4.1. Test 1: water pollution

Let us consider a first test case that is inspired to a problem of a water pollution. The optimal control problem
consists in regulating the emission rates of pollutants (rising e.g. from refusals of industrial or agricultural plants)
to keep the concentration of such substances below a desired threshold in a branch of a river.

We refer to the domain reported in Figure 4a, that could represent a river that bifurcates into two branches
past a hole, which stands for, e.g., an island. Referring to Equation (10), we obtain the velocity field V as the
solution of the following Stokes problem:






−µ∆V + ∇p = 0, in Ω,
V = (1 − ( y

0.2 )2, 0)T , on Γin
D ,

V = 0, on ΓD,
µ∇V · n− pn = 0, on ΓN ,

(64)

where p stands for the pressure, while Γin
D , ΓD and ΓN are indicated in Figure 4b. Adimensional quantities

are used. Here the Stokes problem serves the only purpose to provide an appropriate velocity field for the
advection–diffusion problem; since the latter governs our control problem, the analysis provided in Section 1
and Section 2 applies. Moreover, for the sake of simplicity, we adopt the method and the a posteriori error
estimate (54) proposed in Section 3. In fact, this approach is not fully coherent, being the velocity field V
computed numerically by means of the same grid adopted to solve the control problem, i.e. we consider Vh

instead of V.
For the Stokes problem we assume µ = 0.1 , for which the Reynolds number reads Re ≈ 10; we solve the

problem by means of linear finite elements with stabilization (see [16]), computed with respect to the same grid
of the control problem. In Figure 5 we report the velocity field and its intensity as obtained by solving the
Stokes problem.

For our control problem we assume ν = 0.015, u = 50 in both the emission areas U1 and U2 and zd = 0.1 in
the observation area D. The initial value of the control function, u = 50, can be interpreted as the maximum
rate of emission of pollutants (divided by the emission area), while the state variable w stands for the pollutant

Ω with boundary conditions for the
advection diffusion equation
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grid m k N n
1 168 9 1545 9
2 283 16 2673 9
3 618 29 6036 9

The number m of observations,
the number k of controls, the size
N of the full order system, and
the size n of the reduced order
system for three discretizations.
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The largest Hankel singular values
and the threshold 10−4σ1

(fine grid)
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The full and reduced order model solutions are in excellent agreement:
‖u∗ − û∗‖2L2 = 6.2 · 10−3.
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The convergence histories of the Conjugate Gradient algorithm applied to the
full (+) and the reduced (o) order optimal control problems.

Recall error bound for the gradients:

‖∇J(u)−∇ bJ(u)‖L2 ≤ 2 (c‖u‖L2 + ‖bz(u)‖L2) (σn+1 + . . .+ σN )

for all u ∈ L2!
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Shape Optimization Problem
I Consider the minimization problem

min
θ∈Θad

J (θ) :=

Z T

0

Z
Ω(θ)

`(y(x, t; θ), t, θ)dx dt

where y(x, t; θ) solves

∂

∂t
y(x, t)−∇(k(x)∇y(x, t))

+V (x) · ∇y(x, t)) = f(x, t) (x, t) ∈ Ω(θ)× (0, T ),

k(x)∇y(x, t) · n = g(x, t) (x, t) ∈ ΓN (θ)× (0, T ),

y(x, t) = u(x, t) (x, t) ∈ ΓD(θ)× (0, T ),

y(x, 0) = y0(x) x ∈ ΩD(θ)

I Semidiscretization in space leads to

min
θ∈Θad

J (θ) :=

Z T

0

`(y(t; θ), t, θ) dt

where y(t; θ) solves

M(θ)
d

dt
y(t) + A(θ)y(t) = B(θ)u(t), t ∈ [0, T ],

M(θ)y(0) = M(θ)y0.
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I We would like to replace the large scale problem

min
θ∈Θad

J(θ) :=

Z T

0

`(y(t; θ), t, θ) dt

where y(t; θ) solves

M(θ)
d

dt
y(t) + A(θ)y(t) = B(θ)u(t), t ∈ [0, T ],

M(θ)y(0) = M(θ)y0

I by a reduced order problem

min
θ∈Θad

bJ(θ) :=

Z T

0

`(by(t; θ), t, θ) dt

where by(t; θ) solves

M̂(θ)
d

dt
by(t) + Â(θ)y(t) = B̂(θ)u(t), t ∈ [0, T ],

M̂(θ)by(0) = M̂(θ)by0.

I Problem is that we need a reduced order model that approximates the full
order model for all θ ∈ Θad! Cannot be done using BTMR. I am not
aware of any MR method that can do this with guaranteed error bounds.
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Restrict Problem Class
I Consider classes of problems where the shape parameter θ only

influences a (small) subdomain:

Ω̄(θ) := Ω̄1 ∪ Ω̄2(θ), Ω1 ∩ Ω2(θ) = ∅Γ = Ω̄1 ∩ Ω̄2(θ).

Γ

� ^
Ω1 Ω1Ω2(θ)

I The FE stiffness matrix times vector can be decomposed into

Ay =

0@ AII
1 AIΓ

1 0
AΓI

1 AΓΓ(θ) AΓI
2 (θ)

0 AIΓ
2 (θ) AII

2 (θ)

1A0@ yI1
yΓ

yI2

1A
where AΓΓ(θ) = AΓΓ

1 + AΓΓ
2 (θ).

The matrices M, B admit similar representations.
I Consider objective functions of the type∫ T

0

`(y(t), t, θ)dt =
1
2

∫ T

0

‖CI
1y

I
1−dI1(t)‖22 + ˜̀(yΓ(t),yI2(t), t, θ)dt.
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Our Optimization problem

min
θ∈Θad

J(θ) :=

Z T

0

`(y(t; θ), t, θ) dt

where y(t; θ) solves

M(θ)
d

dt
y(t) + A(θ)y(t) = B(θ)u(t), t ∈ [0, T ],

M(θ)y(0) = M(θ)y0

can now be written as

min
θ∈Θad

J(θ) :=
1

2

Z T

0

‖CI
1yI1 − dI1(t)‖22 + è(yΓ(t),yI2(t), t, θ)dt.

where y(t; θ) solves

MII
1
d

dt
yI1(t) + MIΓ

1
d

dt
yΓ(t) + AII

1 yI1(t) + AIΓ
1 yΓ(t) = BI

1uI1(t)

MII
2 (θ)

d

dt
yI2(t) + MIΓ

2 (θ)
d

dt
yΓ(t) + AII

2 (θ)yI2(t) + AIΓ
2 (θ)yΓ(t) = BI

2(θ)uI2(t)

MΓI
1
d

dt
yI1(t) + MΓΓ(θ)

d

dt
yΓ(t) + MΓI

2 (θ)
d

dt
yI2(t)

+AΓI
1 yI1(t) + AΓΓ(θ)

d

dt
yΓ(t) + AΓI

2 (θ)yI2(t) = BΓ(θ)uΓ(t)

Dependence on θ ∈ Θad is now localized. The fixed subsystem 1 is large. The
variable subsystem 2 is small. Idea: Reduce subsystem 1 only.
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First Order Optimality Conditions

I Lagrangian

L(y,p, θ) = J(θ) +

Z T

0

p(t)T
“
M(θ)

d

dt
y(t) + A(θ)y(t)−B(θ)u(t)

”
dt

I The first order necessary optimality conditions are

M(θ)
d

dt
y(t) + A(θ)y(t) = B(θ)u(t) t ∈ [0, T ],

M(θ)y(0) = y0,

−M(θ)
d

dt
p(t) + AT (θ)p(t) = −∇y`(y, t, θ) t ∈ [0, T ],

M(θ)p(T ) = 0.

∇θL(y(t),p(t), θ)(eθ − θ) ≥ 0, eθ ∈ Θad

I Gradient of J is given by ∇J(θ) = ∇θ`(y(t),p(t), θ).
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Using the DD structure, the state and adjoint equations can be written
as

MII
1
d

dt
yI1(t) + MIΓ

1
d

dt
yΓ(t) + AII

1 yI1(t) + AIΓ
1 yΓ(t) = BI

1uI1(t)

MII
2 (θ)

d

dt
yI2(t) + MIΓ

2 (θ)
d

dt
yΓ(t) + AII

2 (θ)yI2(t) + AIΓ
2 (θ)yΓ(t) = BI

2(θ)uI2(t)

MΓI
1
d

dt
yI1(t) + MΓΓ(θ)

d

dt
yΓ(t) + MΓI

2 (θ)
d

dt
yI2(t)

+AΓI
1 yI1(t) + AΓΓ(θ)

d

dt
yΓ(t) + AΓI

2 (θ)yI2(t) = BΓ(θ)uΓ(t),

−MII
1
d

dt
pI1(t)−MIΓ

1
d

dt
pΓ(t) + AII

1 pI1(t) + AIΓ
1 pΓ(t) = −(CI

1)T (CI
1yI1(t)− dI1)

−MII
2 (θ)

d

dt
pI2(t)−MIΓ

2 (θ)
d

dt
pΓ(t) + AII

2 (θ)pI2(t) + AIΓ
2 (θ)pΓ(t) = −∇yI

2
è(.)

−MΓI
1
d

dt
pI1(t)−MΓΓ(θ)

d

dt
pΓ(t)−MΓI

2 (θ)
d

dt
pI2(t)

+AΓI
1 pI1(t) + AΓΓ(θ)

d

dt
pΓ(t) + AΓI

2 (θ)pI2(t) = −∇yΓ è(.),
To apply model reduction to the system corresponding to fixed subdomain Ω1,
we have to identify how yI1 and pI1 interact with other components.
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Model Reduction of Fixed Subdomain Problem

We need to reduce

MII
1

d

dt
yI1(t) = −AII

1 yI1(t)−MIΓ
1

d

dt
yΓ(t) + BI

1u
I
1(t)−AIΓ

1 yΓ(t)

zI1 = CI
1y

I
1(t)− dI1

zΓ
1 = −MΓI

1

d

dt
yI1 −AΓI

1 yI1,

−MII
1

d

dt
pI1(t) = −AII

1 pI1(t) + MIΓ
1

d

dt
pΓ(t)− (CI

1)T zI1 −AIΓ
1 pΓ(t)

qI1 = (BI
1)TpI1

qΓ
1 = MΓI

1

d

dt
pI1 −AΓI

1 pI1

For simplicity we assume that

MIΓ
1 = 0 MΓI

1 = 0,
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we get

MII
1

d

dt
yI1(t) = −AII

1 yI1(t) + (BI
1 | −AIΓ

1 )
(

uI1
yΓ

)
,(

zI1
zΓ

1

)
=
(
−CI

1

−AΓI
1

)
yI1 +

(
I
0

)
dI1,

−MII
1

d

dt
pI1(t) = −AII

1 pI1(t) + (−(CI
1)T | −AIΓ

1 )
(

zI1
pΓ

)
,(

qI1
qΓ

1

)
=
(

(BI
1)T

−AΓI
1

)
pI1.

This system is exactly of the form needed for balanced truncation model
reduction.
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Reduced Optimization Problem
I We apply BTMR to the fixed subdomain problem with inputs and output

determined by the original inputs to subdomain 1 as well as the interface
conditions.

I In the optimality conditions replace the fixed subdomain problem by its
reduced order model.

I We can interpret the resulting reduced optimality system as the optimality
system of the following reduced optimization problem

min

Z T

0

1

2
‖bCI

1byI1 − dI1(t)‖22 + è(yΓ(t),yI2(t), t, θ)dt

subject to

cMII
1
d

dt
byI1(t) + cMIΓ

1
d

dt
yΓ(t) + bAII

1 byI1(t) + bAIΓ
1 yΓ(t) = bBI

1uI1(t)

MII
2 (θ)

d

dt
yI2(t) + MIΓ

2 (θ)
d

dt
yΓ(t) + AII

2 (θ)yI2(t) + AIΓ
2 (θ)yΓ(t) = BI

2(θ)uI2(t)

cMΓI
1
d

dt
yI1(t) + MΓΓ(θ)

d

dt
yΓ(t) + MΓI

2 (θ)
d

dt
yI2(t)

+bAΓI
1 yI1(t) + AΓΓ(θ)

d

dt
yΓ(t) + AΓI

2 (θ)yI2(t) = BΓ(θ)uΓ(t)

byI1(0) = byI1,0 yI2(0) = yI2,0, yΓ(0) = yΓ
0 ,

θ ∈ Θad
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Error Estimate
If I there exists α > 0 such that

vTAv ≤ −αvTMv, ∀v ∈ RN ,

I the gradients ∇
y

(2)
I

è(y(2)
I ,yΓ, t, θ), ∇yΓ

è(y(2)
I ,yΓ, t, θ),

∇θ è(y(2)
I ,yΓ, t, θ), are Lipschitz continuous in y

(2)
I ,yΓ

I for all ‖eθ‖ ≤ 1 and all θ ∈ Θ the following bound holds

max
n
‖DθM(2)(θ)eθ‖, ‖DθA(2)(θ)eθ‖, ‖DθB(2)(θ)eθ‖o ≤ γ,

then there exists c > 0 dependent on u, by, and bλ such that

‖∇J(θ)−∇ bJ(θ)‖L2 ≤ c

α
(σn+1 + ...+ σN ).

If we assume the convexity condition

(∇J(bθ∗)−∇J(θ∗))
T (bθ∗ − θ∗) ≥ κ‖bθ∗ − θ∗‖2,

then we obtain the error bound

‖θ∗ − bθ∗‖ ≤ c

ακ
(σn+1 + ...+ σN ).
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Example
I Reference domain Ωref

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1

0

1

Ω
A

Ω
B

Ω
H

Γ
I

Γ
I

 Ω
C

Γ
R

Γ
L

Γ
T

Γ
B

I Optimization problem

min

TZ
0

Z
ΓL∪ΓR

|y − yd|2dsdt+

TZ
0

Z
Ω2(θ)

|y − yd|2dxdt

subject to the differential equation

yt(x, t)−∆y(x, t) + y(x, t) =100 in Ω(θ)× (0, T ),

n · ∇y(x, t) = 0 on ∂Ω(θ)× (0, T ),

y(x, 0) = 0 in Ω(θ)

and design parameter constraints θmin ≤ θ ≤ θmax.

I We use kT = 3, kB = 3 Bézier control points to specify the top and the
bottom boundary of the variable subdomain Ω2(θ).
The desired temperature yd is computed by specifying the optimal
parameter θ∗ and solving the state equation on Ω(θ∗).
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I We use automatic differentiation to compute the derivatives with respect
to the design variables θ.

I The semi-discretized optimization problems are solved using a projected
BFGS method with Armijo line search. The optimization algorithm is
terminated when the norm of projected gradient is less than ε = 10−4.

I The optimal domain

−10 −8 −6 −4 −2 0 2 4 6 8 10

−1

0

1
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N
(1)
dof Ndof

Reduced 147 581
Full 4280 4714

Sizes of the full and the
reduced order problems

0 50 100 150 200 250 300
10

−10
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−8

10
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10
−4

10
−2

10
0

The largest Hankel singular values
and the threshold 10−4σ1

Error in solution between full and reduced order problem:
‖θ∗ − θ̂∗‖2 = 2.325 · 10−4

Optimal shape parameters θ∗ and θ̂∗ (rounded to 5 digits)
computed by minimizing the full and the reduced order model.
θ∗ (1.00, 2.0000, 2.0000, -2.0000, -2.0000, -1.00)

θ̂∗ (1.00, 1.9999, 2.0001, -2.0001, -1.9998, -1.00)
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The convergence histories of the projected BFGS algorithm applied to the
full and the reduced order problems.
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convergence history of the objec-
tive functionals for the full (+)
and reduced (o) order model.
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convergence history of the pro-
jected gradients for the full (+)
and reduced (o) order model.
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Outline

Model Reduction

Model Reduction and Optimal Control of the Advection Diffusion
Equation

Model Reduction and Shape Optimization of the Advection Diffusion
Equation

Model Reduction and Shape Optimization of the Stokes Equation

Uncertainty
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Shape Optimization Governed by Stokes System

-

-

Γin

ΓD
ΓD(θ)

Γout

Ω1

Ω1

Ω2

min
θ∈Θad

J(θ) :=
∫ T

0

∫
Ω(θ)

`(v(θ), p(θ), t, θ)dx dt

where v(θ), p(θ) solve the Stokes equations

∂

∂t
v(x, t)− ν∆v(x, t) +∇p(x, t) = f(x, t) in Ω(θ)× [0, T ] ,

div v(x, t) = 0 in Ω(θ)× [0, T ] ,
(ν∇v(x, t) + p(x, t)) = 0 on Γout(θ)× [0, T ] ,

v(x, t) = u(x, t) on (ΓD(θ) ∪ Γin)× [0, T ] ,
v(x, 0) = v0(x) in Ω(θ).
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I We apply the same approach
I Assume that only a small part of the domain depends on the shape

parameter θ.
I Use DD to isolate the quantities that depend on θ.
I Use BMTR to reduced the subdomain problem that corresponds to

the filed domain.

I But (discretized) Stokes equations leads to a DAE (Hessenberg index
2) and this makes approach and analysis much more complicated.

I Standard BTMR cannot be used. Extension for Stokes type systems
exist (Stykel 2006, H./Sorensen/Sun 2008).

I Spatial domain decomposition for the Stokes system requires care to
ensure well-posedness of the coupled problem as well as of the
subdomain problems. See, e.g., Proceedings of DD Conferences at
www.ddm.org or Toselli/Widlund book for approaches.

I We use discretization with discontinuous pressures along the
subdomain interface. Subdomain pressures are represented as a
constant plus a pressure with zero spatial average.

I Error analysis for the shape optimization exists for the case when the
objective function corresponding to the fixed subdomain does not
explicitly depend on pressure (Antil,H.,Hoppe 2009).
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The Semidiscretized Problem

The semi-discretized minimization problem is

min
θ∈Θad

J(θ) :=
∫ T

0

1
2

∫ T

0

‖Cv(t, θ) + Fp(t, θ) + Du(t)− d‖2 dt

where v(·, θ), p(·, θ) solves the semi-discretized Stokes equations

M(θ)
d

dt
v(t) + A(θ)v(t) + B(θ)p(t) = K(θ)u(t) t ∈ [0, T ] ,

BT (θ)v(t) = L(θ)u(t) t ∈ [0, T ] ,
M(θ)v(0) = M(θ)v0,

θ ∈ Θad
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Optimality Conditions

I The necessary optimality conditions involve the state and the adjoint
equations (we omit dependence on θ to simplify notation)

M
d

dt
v(t) = Av(t) + BTp(t) + Ku(t) ,

0 = Bv(t) + Lu(t) t ∈ [0, T ] ,

z(t) = Cv(t) + Fp(t) + Du(t)− d(t),

−M
d

dt
λ(t) = Aλ(t) + BTπ(t) + CT z(t) ,

0 = Bλ(t) + CT z(t) t ∈ [0, T ] ,

q(t) = KTλ(t) + LTπ(t) + DT z(t).

I We cannot apply balanced truncation model reduction in standard form.
Idea: Apply projection to enforce ‘incompressibility’ constraint and
eliminate pressure.
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I Write v(t) = vH(t) + vP(t), where vP(t) = M−1BT (BM−1BT )−1Lu(t)
and vH satisfies 0 = BvH(t).

I Define projection Π = I−BT (BM−1BT )−1BM−1.

I Since 0 = BvH(t) we have ΠTvH(t) = vH(t).

I Insert into Stokes equation and multiply by Π to get

ΠMΠT d

dt
vH(t) = −ΠAΠTvH(t) + ΠeBu(t),

z(t) = eCΠTvH(t) + eDu(t)− F(BM−1BT )−1L
d

dt
u(t).

I Similarly for adjoint equations

−ΠMΠT d

dt
λH(t) = −ΠATΠTλH(t) + ΠeCT z(t),

q(t) = eBTΠTλH(t) + eDTw(t) + LT (BM−1BT )−1FT
d

dt
z(t).

I We can apply BTMR to these two systems for vH and λH.

I Note that outputs z,q and pressure

p(t) =(BM−1BT )−1
h
−BM−1AvH(t)

+ BM−1
“
K−AM−1BT (BM−1BT )−1L

”
u(t)− L

d

dt
u(t)

i
depend on d

dt
u and d

dt
z.
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Domain Decomposition: Discontinuous Pressure
Γ

� ^
Ω1 Ω1Ω2(θ)

I On each subdomain, the pressure is written as the sum of a constant
pressure plus a pressure with zero spatial average. pIj is the pressure in Ωj
with average 0; p0 the vector constant pressures. There is no pressure
associated with the interface.

I The Stokes matrix times vector multiplication can be decomposed into

Sy =

0BBBBBB@

AII
1 (BII

1 )T 0 0 AIΓ
1 0

BII
1 0 0 0 BΓI

1 0

0 0 AII
2 (BII

2 )T AIΓ
2 0

0 0 BII
2 0 BΓI

2 0

AΓI
1 (BΓI

1 )T AΓI
2 (BΓI

2 )T AΓΓ (B0)T

0 0 0 0 B0 0

1CCCCCCA

0BBBBBB@

vI1
pI1
vI2
pI2
vΓ

p0

1CCCCCCA
I Zeros 0 in last row and column block are important to derive error bound

for the coupled reduced problem (Antil,H.,Hoppe 2009).
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Example

Geometry motivated by biochip
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min
θmin≤θ≤θmax

J(θ) =

T∫
0

∫
Ωobs

1
2 |∇×v(x, t; θ)|2dx+

∫
Ω2(θ)

1
2 |v(x, t; θ)−vd(x, t)|2dxdt

where v(θ) and p(θ) solve the Stokes equations

vt(x, t)− µ∆v(x, t) +∇p(x, t) = f(x, t), in Ω(θ)× (0, T ),
∇ · v(x, t) = 0, in Ω(θ)× (0, T ),

v(x, t) = vin(x, t) on Γin × (0, T ),
v(x, t) = 0 on Γlat × (0, T ),

−(µ∇v(x, t)− p(x, t)I)n = 0 on Γout × (0, T ),
v(x, 0) = 0 in Ω(θ).

Here Ω(θ) = Ω1 ∪ Ω2(θ) and Ω2(θ) is the top left yellow, square domain.
The observation region Ωobs is part of the two reservoirs.
We have 12 shape parameters, θ ∈ R12.
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grid m N
(1)
v,dof N

(1)bv,dof Nv,dof Nbv,dof
1 149 4752 23 4862 133
2 313 7410 25 7568 183
3 361 11474 26 11700 252
4 537 16472 29 16806 363

The number m of observations in Ωobs, the
number of velocities N

(1)
v,dof , N

(1)bv,dof in the
fixed subdomain Ω1 for the full and re-
duced order model, the number of velocities
Nv,dof , Nbv,dof in the entire domain Ω for
the full and reduced order model for five
discretizations.
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I Error in optimal parameter computed sing the full and the reduced
order model (rounded to 5 digits)

θ∗ (9.8987, 9.7510, 9.7496, 9.8994, 9.0991, 9.2499, 9.2504, 9.0989)

θ̂∗ (9.9026, 9.7498, 9.7484, 9.9021, 9.0940, 9.2514, 9.2511, 9.0956)

I The convergence histories of the projected BFGS algorithm applied
to the full and the reduced order problems.
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jected gradients for the full (+)
and reduced (o) order model.
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Outline

Model Reduction

Model Reduction and Optimal Control of the Advection Diffusion
Equation

Model Reduction and Shape Optimization of the Advection Diffusion
Equation

Model Reduction and Shape Optimization of the Stokes Equation

Uncertainty
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I We have considered optimization problems of the form

minimize

Z T

0

`(y(t),u(t), t, θ)dt,

subject to

M(θ)
d

dt
y(t) + A(θ)y(t) = B(θ)u(t), t ∈ (0, T ),

M(θ)y(0) = y0,

where the optimization variables are either u or θ and where the other
quantity (θ or u) was considered fixed.

I We have constructed reduced order optimization problems

minimize

Z T

0

`(by(t),u(t), t, θ)dt,

subject to

cM(θ)
d

dt
by(t) + bA(θ)by(t) = bB(θ)u(t), t ∈ (0, T ),

cM(θ)y(0) = by0.

I We have proven error bounds for the gradients of the full and for the
reduced problem of the form

‖∇J−∇ bJ‖ ≤ c‖u‖L2(σn+1+. . .+σN ) for all u ∈ L2 and for all θ ∈ Θad!
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I Since the bound holds for all u ∈ L2 and for all θ ∈ Θad this is much
stronger that what we needed in our context, but can be extremely useful
when the other parameter is allowed to vary randomly.

I We can replace

minimize

Z T

0

`(y(t),u(t), t, θ)dt,

subject to

M(θ)
d

dt
y(t) + A(θ)y(t) = B(θ)u(t), t ∈ (0, T ),

M(θ)y(0) = y0,

by the smaller and computationally much less expensive problem

minimize

Z T

0

`(by(t),u(t), t, θ)dt,

subject to

cM(θ)
d

dt
by(t) + bA(θ)by(t) = bB(θ)u(t), t ∈ (0, T ),

cM(θ)y(0) = by0.

I We are working on the theory.

I Some indication that model reduction can be very useful was given by
K. Willcox et.al.
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Probabilistic Analysis of Blade Geometry Variation
(Courtesy of K. Willcox)

I Two-dimensional model problem governed by the
(linearized) Euler equations.

I Our CFD model uses a discontinuous Galerkin
formulation, and has 51,504 states per blade
passage.

I Reduced order model is generated by an
optimization approach (not BTMR, no error
bounds available).

I Linearized CFD model and reduced-order model
Monte Carlo simulations results. Work per cycle is
predicted for blade plunging motion at an
interblade phase angle of 180◦ for 10,000
randomly selected blade geometries.
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Comparison of linearized CFD and reduced-order model predictions of
WPC for Blade 1. Monte Carlo simulations results are shown for 10,000
blade geometries. The same geometries were analyzed in each case.

CFD Reduced

Model size 103,008 201
Offline cost – 2.8 hours
Online 501.1 hours 0.21 hours
Blade 1 mean -1.8572 -1.8573
Blade 1 variance 2.687e-4 2.682e-4
Blade 2 mean -1.8581 -1.8580
Blade 2 variance 2.797e-4 2.799e-4
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Conclusions

I There are many PDE systems with complicated physics, but with
few inputs and few outputs.

I How can we extract in a systematic matter the relevant dynamics to
get an inexpensive model of the input-output map with a guaranteed
error bound?

I We have integrated domain decomposition and model reduction for
systems with small localized nonlinearities. In our case, nonlinearities
arise from dependence on shape parameters.

I We have proven estimates for the error between the solution of the
original and the reduced order problem.

I Error estimates depend on balanced truncation error estimates.

I Availability of reduced order model techniques for nonlinear or
parametrically varying systems with guaranteed error bounds is the
bottleneck.

I Our error estimates hold for all parameters and hence make our
reduced order models interesting for probabilistic
analysis/optimization under uncertainty.

M. Heinkenschloss 06/05/09 57


	Model Reduction
	Model Reduction and Optimal Control of the Advection Diffusion Equation
	Model Reduction and Shape Optimization of the Advection Diffusion Equation
	Model Reduction and Shape Optimization of the Stokes Equation
	Uncertainty

