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Model problem

1
inJ S i 2
[min J(u) 2/Qly Yol
subject to y = G(u).

Here,
Uag := {v € L?(Q);a <u < b} C LYQ)

with a < b constants, and y = G(Bu) iff

—Ay =uin Q, and y = 0 on 99.

More general elliptic operators may be considered, and also control
operators which map abstract controls to feasible right-hand sides
of the elliptic equation.
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Existence and uniqueness, optimality conditions

The optimal control problems admits a unique solution.

The function u € U,q is a solution of the optimal control problem
iff there exists an adjoint state p such that y = G(u),
p=6G(y — yo) and

(p,v —u) > 0 for all v € Uyg.

There holds
=a, p(x) > 0,
u(x) € [a,b], p(x) =0,
=b, p(x) < 0.

Strict complementarity requirement for the solution u:

3C > 0Ve > 0: L({x € Q; |p(x)| < €}) < Ce
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Variational discretization

Discrete optimal control problem:

1
min J = = — yol?
min 3o(w) =5 [ = yo
subject to y, = Gy(u).

Here, Gi(u) denotes the piecewise linear and continuous finite
element approximation to y(u), i.e.

a(yn, vh) := (Vyn, Vi) = (u,vy) for all v, € Xy,
where on a given, quasi-uniform triangulation 7,

Xp:i={we CU(S_I);W|an = 0, w, linear for all T € Tn}.

This problem is still co—dimensional.

Ritz projection Ry, : H{(2) — X,

a(Rhw, Vh) = a(w,vh) for all v, € X,
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Existence and uniqueness, optimality conditions for
discrete problem

The variational-discrete optimal control problems admits a unique
solution.

The function u, € U,q is a solution of the optimal control problem
iff there exists an adjoint state py, such that y, = G, (uy),
Ph = Gn(yn — yo) and

(Ph,v —up) > 0 for all v € Upyg.

There holds
=a, Pn(x) > 0,
un(x) € [a,b], pn(x) =0,
=b, ph(x) <0.
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Error estimate

Let u, u, denote the unique solutions of the optimal control
problems with corresponding states y = G(u) and y, = Gi(uh),
resp. Then

llu = unlles, ly = yulls lIp — pulle < C{h®+ ||p — Rup|lL=}

Sketch of proof:
> flu—up|l < (b—a)l({p > 0,pn <0} U {p <0,pn >0})

> {p>0,pn < 0}U{p <0,pn >0} C {lp(x)| < [IP—Pnlloc} =
> Jlu— unl|in < Cllp — Pnllo

> |[p = Phllooc < |lP — Ruplloo + [[RaP — Phlloo

> [[Rap — Phlloc < Clly — ynll-

» Combine these estimates with (p,u, — u) > 0 and
(Ph,u — up) > 0 (note that u is admissible as testfunction for
the discrete problem!).
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Numerical example with 2 switching points

Experimental order of convergence:

Active set 3.00073491, (here =) ||u — uy||1: 3.00077834
Function values 1.99966106

||p — Phl|Lee: 1.99979367

[ly — ¥n||Le: 1.9997965

[lp — pnl|L2: 1.99945711
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Thank you very much for your attention!
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