Risk Averse Shape Optimization

Sergio Conti ² Martin Pach¹ Martin Rumpf ² Rüdiger Schultz ¹

¹Department of Mathematics University Duisburg-Essen

²Rheinische Friedrich-Wilhelms-Universität Bonn

Workshop on PDE Constrained Optimization of Certain and Uncertain Processes 2009

- Introduction
- 2 Level set method
 - Level set formulation
 - Shape gradient
 - Topological Derivative
 - Optimization Algorithm
- Risk Averse Functionals
 - Uncertainty
 - Expected Excess
 - Excess Probability
- Mumerical Results
 - Examples

Conceptual sketch

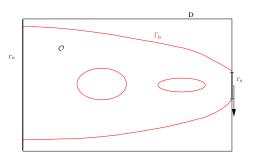


Figure: General setting in 2D

Optimization Task

$$\min_{\mathcal{O} \in \mathcal{O}_{ad}} \quad J(\mathcal{O})$$

$$\mathcal{O}_{ad} = \{ \mathcal{O} \subset D : \partial \mathcal{O} \text{ Lipschitz-continuous } \}$$

Linear elasticity model

The displacement u is given by the equation system

PDE
$$\begin{cases} -\operatorname{div}(Ae(u)) = f & \text{in } \mathcal{O}, \\ u = 0 & \text{on } \Gamma_D, \\ (Ae(u))n = g & \text{on } \Gamma_N \end{cases}$$

ullet Elastic body $\mathcal{O}\subset\mathbb{R}^3$

$$\partial \mathcal{O} = \Gamma_N \cup \Gamma_D, \ \Gamma_D \neq \emptyset$$

- Volume forces f in \mathcal{O}
- Neumann forces g on Γ_N

where $e(u) = \frac{1}{2}(\nabla u + \nabla u^T)$ is the linearized strain tensor and Hooke's law

$$A\xi = 2\mu\xi + \lambda(\text{tr}\xi)\text{Id}$$
, for any symmetric matrix ξ

Shape optimization problem

Compliance

$$J(\mathcal{O}) = \int_{\mathcal{O}} f \cdot u \, \mathrm{d}x + \int_{\Gamma_N} g \cdot u \, \mathrm{d}s$$

• Least square error compared to target displacement

$$J(\mathcal{O}) = \left(\int_{\mathcal{O}} |u - u_0|^2 \, \mathrm{d}x \right)^{\frac{1}{2}}$$

Shape optimization problem

$$\label{eq:local_def} \begin{split} \min_{\mathcal{O} \in \mathcal{O}_{ad}} \quad & J(\mathcal{O}) \; + \; lV(\mathcal{O}) \qquad \text{with } l \, \in \mathbb{R}, \; l > 0 \\ & \mathcal{O}_{ad} = \{ \mathcal{O} \subset D : \; \partial \mathcal{O} \; \text{Lipschitz-continuous } \} \end{split}$$

Trier09

- Introduction
- 2 Level set method
 - Level set formulation
 - Shape gradient
 - Topological Derivative
 - Optimization Algorithm
- Risk Averse Functionals
 - Uncertainty
 - Expected Excess
 - Excess Probability
- Mumerical Results
 - Examples

Level set formulation

Implicit description of the domain \mathcal{O} via a level set function ϕ

$$\left\{ \begin{array}{lll} \phi(x) &=& 0 &<=> & x \in \partial \mathcal{O} \\ \phi(x) &<& 0 &<=> & x \in \mathcal{O} \\ \phi(x) &>& 0 &<=> & x \not\in \mathcal{O} \end{array} \right.$$

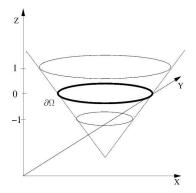


Figure: Levelset description in 2D

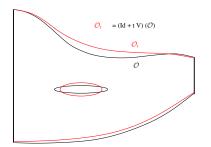
- Introduction
- 2 Level set method
 - Level set formulation
 - Shape gradient
 - Topological Derivative
 - Optimization Algorithm
- Risk Averse Functionals
 - Uncertainty
 - Expected Excess
 - Excess Probability
- Numerical Results
 - Examples

Shape gradient

We consider variations $\mathcal{O}_t = (Id + t \cdot V)(\mathcal{O})$, t > 0 of a smooth elastic domain \mathcal{O} for a smooth vector field V defined on the working domain D.

The shape derivative of $J(\mathcal{O})$ at \mathcal{O} in direction V is defined as the Fréchet derivative of the mapping $t \to J(\mathcal{O}_t)$, i.e.

$$J(\mathcal{O}_t) = J(\mathcal{O}) + \left\langle \frac{\partial J}{\partial \mathcal{O}}, V \right\rangle + o(\|V\|)$$



cf. [Sokolowski, Zolesio '92], [Delfour, Zolesio '01]

Shape gradient

As a classical result of the shape sensitivity analysis the shape derivative takes the form

$$< \frac{\partial J}{\partial \mathcal{O}}, V > = \int_{\Gamma_N} \left(2 \left[\frac{\partial (g \cdot u)}{\partial n} + hg \cdot u + f \cdot u \right] - \mathcal{A}\epsilon(u) : \epsilon(u) \right) V \cdot \vec{n} \, d\nu$$

$$+ \int_{\Gamma_D} \left(\mathcal{A}\epsilon(u) : \epsilon(u) \right) V \cdot \vec{n} \, d\nu$$

Here *h* denotes the mean curvature of $\partial \mathcal{O}$ and \vec{n} the outer normal.

Shape gradient in level set formulation

When the domain $\mathcal O$ is implicitly deformed by varying the level set function ϕ

$$\phi_t = \phi + t\psi$$

the level set equation

$$\partial_t \phi + |\nabla \phi| \, v \cdot n = 0 \qquad n = \frac{\nabla \phi}{|\nabla \phi|}$$

allows to define

$$<\frac{\partial J}{\partial \phi}, \psi>:=<\frac{\partial J}{\partial \mathcal{O}}, -\psi \cdot \frac{\vec{n}}{\|\nabla \phi\|}>$$

cf. [Osher, Sethian '88], [Burger, Osher '04]

Shape gradient in level set formulation

We take into account a regularized gradient descent, based on the metric

$$\mathcal{G}(\theta,\zeta) = \int_{D} \theta \zeta + \frac{\sigma^{2}}{2} \nabla \theta \cdot \nabla \zeta \, dx$$

which is related to a Gaussian filter with width σ .

The shape gradient is the solution of equation

$$\mathcal{G}(grad_{\phi}J, \theta) = \langle \frac{\partial J}{\partial \mathcal{O}}, \theta \rangle \qquad \forall \theta \in H_0^{1,2}(\mathcal{D})$$

- Introduction
- 2 Level set method
 - Level set formulation
 - Shape gradient
 - Topological Derivative
 - Optimization Algorithm
- Risk Averse Functionals
 - Uncertainty
 - Expected Excess
 - Excess Probability
- Numerical Results
 - Examples

Topological Derivative

Asymptotic behavier for infinitesimal small hole

$$\mathcal{T}(x) = \lim_{\rho \downarrow 0} \frac{J(\mathcal{O} \setminus \overline{B_{\rho}(x)}) - J(\mathcal{O})}{|\overline{B_{\rho}(x)}|}$$

Toppological derivative for the compliance

$$\mathbf{D}_{\text{topo}}\mathbf{J}(x) = \frac{\pi \left(\lambda + 2\mu\right)}{2\mu \left(\lambda + \mu\right)} \left\{ 4\mu A e(u_i) : e(u_i) + (\lambda - \mu) tr A e(u_i) tr e(u_i) \right\}$$

- Introduction
- 2 Level set method
 - Level set formulation
 - Shape gradient
 - Topological Derivative
 - Optimization Algorithm
- Risk Averse Functionals
 - Uncertainty
 - Expected Excess
 - Excess Probability
- Numerical Results
 - Examples

Optimization algorithm

time continuous regularized gradient descent:

$$\partial \phi(t) = -grad_{\phi}J(\phi)$$

with time discrete relaxation:

$$\mathcal{G}(\phi^{k+1} - \phi^k, \theta) = -\tau < \frac{\partial J}{\partial \mathcal{O}}, \theta > \qquad \forall \theta \in H_0^{1,2}(\mathcal{D})$$

additional ingrediens of the algorithm:

- multigrid method for the primal and the dual problem (d = 3)
- preconditioned CG (d=2)
- cascadic optimization (from coarse to fine grid resolution)
- morphological smoothing when switching the grid resolution $(\sigma = 2.5h \text{ or } 4.5h)$
- topological changes are performed every 10 steps

- Introduction
- 2 Level set method
 - Level set formulation
 - Shape gradient
 - Topological Derivative
 - Optimization Algorithm
- Risk Averse Functionals
 - Uncertainty
 - Expected Excess
 - Excess Probability
- Numerical Results
 - Examples

Structure of Random Forces

Assume that ω follows a discrete distribution with scenarios ω_{σ} and probabilities π_{σ} with $\sum_{\sigma=1}^{S} \pi_{\sigma} = 1$ and 'basis' loads (f^k, g^m) spanning the load space:

$$f(\omega) = \sum_{k=1}^{K} \alpha_k f^k$$
, $g(\omega) = \sum_{m=1}^{M} \beta_m f^m$

by linearity:

$$\bar{u}(\mathcal{O}, \omega) = \sum_{k=1}^{K} \alpha_k \, u_f^k + \sum_{m=1}^{M} \beta_m u_g^m$$
solves
$$A(\mathcal{O}, \bar{u}(\mathcal{O}, \omega_{\sigma}), \varphi) = l(\mathcal{O}, \varphi, \omega_{\sigma})$$

- Introduction
- 2 Level set method
 - Level set formulation
 - Shape gradient
 - Topological Derivative
 - Optimization Algorithm
- Risk Averse Functionals
 - Uncertainty
 - Expected Excess
 - Excess Probability
- Mumerical Results
 - Examples

Expected Excess

Considering the following problem

$$\min \Big\{ \sum_{\sigma=1}^{S} \pi_{\sigma} \max \{ J(\mathcal{O}, \omega_{\sigma}) - \eta, 0 \} \quad \mathcal{O} \in \mathcal{U}_{ad} \Big\}$$

and the smooth approximation of the maximun function

$$\max\{a,0\} = \frac{\sqrt{a^2 + a}}{2} \approx \frac{\sqrt{a^2 + \epsilon} + a}{2} =: \mathit{Max}(a) \qquad \epsilon > 0$$

we get the differentiable Expected Excess functional.

expected excess

$$\min\{\mathbb{EE}(\mathcal{O}) := \sum_{\sigma=1}^{S} \pi_{\sigma} \operatorname{\mathit{Max}}(J(\mathcal{O}, \omega_{\sigma})) \quad : \mathcal{O} \in \mathcal{U}\}$$

Trier09

- Introduction
- 2 Level set method
 - Level set formulation
 - Shape gradient
 - Topological Derivative
 - Optimization Algorithm
- Risk Averse Functionals
 - Uncertainty
 - Expected Excess
 - Excess Probability
- Numerical Results
 - Examples

Excess Probability

Now consider

$$\min\{\mathbb{P}(J(\mathcal{O},\omega)>\eta)\ : \mathcal{O}\in\mathcal{U}_{ad}\}$$

The random stage ω follows a discrete distribution with finitely many scenarios ω_{σ} and probabilities π_{σ} according to $\sum_{\sigma=1}^{S} \pi_{\sigma} = 1$ and we get

$$\min\{\mathbb{P}(J(\mathcal{O},\omega_{\sigma})>\eta)=\sum_{\sigma=1}^{S}\pi_{\sigma}\,H(J(\mathcal{O},\omega_{\sigma})-\eta)$$

where H(x) is supposed to be the Heaviside function. Again we use a smooth approximation H(x) $\approx \frac{1}{2} + \frac{1}{2} tanh(kx) = \frac{1}{1+e^{-2k}}$

excess probability

$$\min\{\mathbb{EP}(\mathcal{O}) := \sum_{\sigma=1}^S \pi_\sigma \ H(J(\mathcal{O},\omega_\sigma)) \ : \mathcal{O} \in \mathcal{U}\}$$

- Introduction
- 2 Level set method
 - Level set formulation
 - Shape gradient
 - Topological Derivative
 - Optimization Algorithm
- Risk Averse Functionals
 - Uncertainty
 - Expected Excess
 - Excess Probability
- Mumerical Results
 - Examples

Test Setting

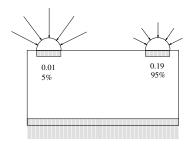


Figure: Nonsymmetric stochastic loading

Figure: The results for EV, EE and EP; the threshold η is set to 0.4

Expected Excess

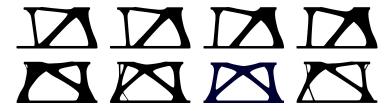
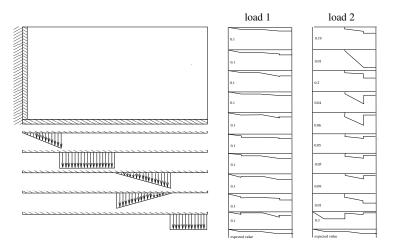
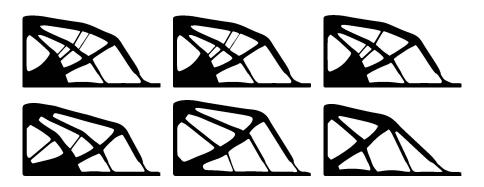


Figure: A sequence of results for the optimization with respect to the expected excess for $\eta = 0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.0., 1.5.$

Cantilever



Trier09



Thank you!

Trier09