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Conceptual sketch

Figure: General setting in 2D

Optimization Task

Omiél J(O) 0. = {O C D : 00 Lipschitz-continuous }
€0
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Linear elasticity model

The displacement u is given by the equation system

PDE e Elastic body O C R?

—div(de(u)) =f inO, 00 =TyUTp, I'p#0

=0 r
“ R @ Volume forces f in O
Ae(u))n =g onTy
@ Neumann forces g on I'y

where e(u) = 3 (Vu + Vu) is the linearized strain tensor

and Hooke’s law

A& =2pu€ + A(tré)Id, for any symmetric matrix £
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Shape optimization problem

o Compliance

J(O):/Of-udx+/rNg~uds

o Least square error compared to target displacement

1

J(0) = (/O |u—u0|2dx)2

Shape optimization problem

min  J(O) + IV(O) withl € R, 1> 0
O€Ou

0. = {0 C D : 00 Lipschitz-continuous }
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Level set formulation
Implicit description of the domain O via a level set function ¢

px) = 0 <=> x € 90
px) < 0 <=> x€ O
dpx) > 0 <=> x&O0O
Z
14

Y
0,

o0

-1t

X

Figure: Levelset description in 2D
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© Level set method

@ Shape gradient
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Shape gradient

We consider variations O, = (Id + ¢ - V)(O), t > 0 of a smooth elastic domain O
for a smooth vector field V defined on the working domain D.

The shape derivative of J(O) at O in direction V is defined as the Fréchet derivative
of the mapping t — J(O,), i.e.

J(0) = J(0) + <§—é, V> +o([IVI])

=(Id+tV) ()

cf. [Sokolowski, Zolesio *92], [Delfour, Zolesio *01]
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Shape gradient

As a classical result of the shape sensitivity analysis the shape derivative takes the
form

<g—é,v> = /(2[% + hg-u —|—f-u} - Ae(u):e(u)) V- itdy

+/(A6(u) ce(u)) V-idv

I'p

Here h denotes the mean curvature of 9O and # the outer normal.
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Shape gradient in level set formulation

When the domain O is implicitly deformed by varying the level set function ¢

o= ¢ + 1Y
the level set equation
\Y
0d+|Volv-n =0 n:ﬁ
allows to define
oJ oJ 7]
< >=< 0, Y >
A R

cf. [Osher, Sethian ’88],
[Burger, Osher ’04]
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Shape gradient in level set formulation

We take into account a regularized gradient descent, based on the metric

o2
G6,¢) = /DHC+ TVHOVCdx

which is related to a Gaussian filter with width o.
The shape gradient is the solution of equation

aJ
Glgradyl,0) = < 55,0 > VO ¢€ Hy*(D)
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Topological Derivative

Asymptotic behavier for infinitesimal small hole

Toppological derivative for the compliance

(A +2pu)
S 2u(A+p)

D,,.J (%) {4pAe(u;) : e(u;) + (N — p)tr Ae(u;)tr e(u;)}
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Optimization algorithm

time continuous regularized gradient descent:

00(t) = —gradyJ (¢)
with time discrete relaxation :

oJ

G —dt0) =7 < 556>  VheH(D)

additional ingrediens of the algorithm :
e multigrid method for the primal and the dual problem (d = 3)
e preconditioned CG (d = 2)
@ cascadic optimization (from coarse to fine grid resolution)

@ morphological smoothing when switching the grid resolution
(o0 =2.5h or 4.5h)

@ topological changes are performed every 10 steps
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© Risk Averse Functionals
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Structure of Random Forces

Assume that w follows a discrete distribution with scenarios w, and probabilities 7,
with Zi:1 7, = 1 and basis’ loads (f*, g”) spanning the load space:

K M
fw)=>aft,  glw)=> Buf"
k=1 m=1

by linearity :

K M
(0) =Y on + 2 0wl
k=1 m=1

solves  A(O,u(0,wy),p) = (O, p,wy)
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© Risk Averse Functionals

o Expected Excess
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Expected Excess

Considering the following problem

s
min{z memax{J(O,w,) — 1,0} O € Z/lad}

o=1
and the smooth approximation of the maximun function

\/c7+a~ va:+e+a
5 ~

max{a,0} = 3

=: Max(a) e>0
we get the differentiable Expected Excess functional.

expected excess

min{EE(O ng Max(J(O,w,)) 0 elU}

o=1
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Excess Probability

Now consider

min{P(J(O,w) >n) 0 €Uy}

The random stage w follows a discrete distribution with finitely many scenarios w,
and probabilities 7, according to Zi:l T, = 1 and we get

min{P(J(O,w,) > 1) Zm J(0,ws) — 1)

where H(x) is supposed to be the Heaviside function. Again we use a smooth

approximation H(x) = 1 + 3tanh(kx) = 1-‘,—61_2]‘
excess probability
S
min{EP(0) := > 7, HUJ(O,w,)) :0 €U}
o=1
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Test Setting

Sk

=== ===
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Figure: Nonsymmetric stochastic loading

A IA _

Figure: The results for EV, EE and EP; the threshold 7 is set to 0.4
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Expected Exccess

Figure: A sequence of results for the optimization with respect to the expected excess
forn=0.1,0.2,0.3,0.4,0.6,0.8, 1.0. , 1.5.
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Cantilever
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Thank you !
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