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Example

Let us consider the bounded domain Ω with the smooth
boundary. Take the state equation in the form

−∆u(x) = F (x ,u(x)) in Ω, u(x) = u0 ≡ const. on ∂Ω .

The shape optimization problem is an optimal choice of the
domain within an admissible class, in such a way that the
boundary shape functional defined on ∂Ω is minimized. The
functional is selected in the form which looks like the drag, i.e.,

j(∂Ω) = u0

∫

∂Ω

∇u(x) · n(x)dS . (1)

Using the Gauss formula we can rewrite this functional in the
distributed form

j(∂Ω) =

∫

Ω

(|∇u|2 − uF (u, x)) dx (2)
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Representation of such kind are common in viscous fluid
dynamics since they have clear physical meaning. For
instance, the gradient parts represents the rate of dissipation of
the energy. However functional (2) is only weakly lower
semicontinuous in the energy space and can be used mostly
for minimization problems. The other approach employed in the
paper can be describe in the following way. Introduce a smooth
scalar function η(x) such that η(x) ≡ 1 on ∂Ω and rewrite the
expression for j(∂Ω) in the equivalent form

J(Ω) = u0

∫

Ω

(∇η · ∇u − ηF (x ,u)) dx . (3)

This functional is weakly continuous, and its principle part is
linear with respect to state variable u. The technical difficulty is
that the integrand contains an arbitrary function η while the
result is independent of η, and we have to eliminate the
influence of η on the results of calculations.
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Shape sensitivity analysis for drag minimization

apply material derivatives technique for state equation and
shape functional in the distributed form (3) with a function η

use the structure theorem for the shape gradient obtained
in the distributed form: show that the shape gradient is
given in fact by a function g(x), x ∈ ∂S on the boundary of
the obstacle S

pass to the singular limits in volume integrals and identify
the boundary form of the shape gradient, i.e., the function
g, show that the geometrical part of the shape derivative of
the drag functional in fact vanishes

test the expression for the shape gradient by numerical
drag minimization
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Flow around an airfoil in wind tunnel

For N-S equations the stress tensor is equal to

T =: ∇u + ∇u∗ + (λ− 1) div u I − R
ǫ2

pI ,

and the hydrodynamical force acting on the body (obstacle) S is
equal

J(S) =: −
∫

∂S

Tn ds

= −
∫

∂S

(∇u + (∇u)∗ + (λ− 1) div uI − R
ǫ2

pI) · nds .
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Drag for flow around an airfoil

∫

∂S

Tn ds =

∫

Ω

(η div T + T∇η) dx , div T = R̺u∇u

using the above identities we obtain (η is given as before !)

J(S) =: −R
∫

Ω

η̺u∇u dx

−
∫

Ω

(∇u + (∇u)∗ + (λ− 1) div uI − R
δ

pI)∇η dx

The drag JD is a work in unit time developed by the component
of J parallel to the airfoil speed U,

JD(S) = U · J(S).
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Preliminary numerical results

Shape optimization

In general the mathematical analysis of shape optimization
problems includes the following steps, with the mathematical
proofs of the required facts,

existence of solutions,

uniqueness and optimality conditions,

numerical method of solution.
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Preliminary numerical results

Obstacle in bounded domain

Figure: Flow domain Ω = B \ S.
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Preliminary numerical results

Drag functional

One of the main applications of the theory of compressible
viscous flows is the optimal shape design in aerodynamics,
e.g., the minimization of the drag of airfoil travelling in
atmosphere with uniform speed U∞. The hydro-dynamical
force acting on the body S is defined by

J(S) = −
∫

∂S
(∇u + (∇u)∗ + (λ− 1) div uI − R

δ
pI) · ndS .

In a frame attached to the moving body the drag is the
component of J parallel to U∞,

JD(S) = U∞ · J(S).

For the fixed data, the drag can be regarded as a functional
depending on the shape of the obstacle S.
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Preliminary numerical results

Geometry of flow domain

We assume that the viscous gas occupies the
double-connected domain Ω = B\S, where B ⊂ R

3, is a hold-all
domain with the smooth boundary Σ = ∂B , and S ⊂ B is a
compact obstacle. Furthermore, we assume that the velocity of
the gas coincides with a given vector field U ∈ C∞(R3)3 on the
surface Σ. In this framework, the boundary of the flow domain
Ω is divided into the three subsets, inlet Σin, outgoing set Σout,
and characteristic set Σ0, which are defined by the equalities
Σin = {x ∈ Σ : U · n < 0}, Σout = {x ∈ Σ : U · n > 0},
Σ0 = {x ∈ ∂Ω : U · n = 0}, where n stands for the outward
normal to ∂Ω = Σ ∪ ∂S. In its turn the compact Γ = Σ0 ∩ Σ
splits the surface Σ into three disjoint parts Σ = Σin ∪ Σout ∪ Γ.
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Preliminary numerical results

Generalized solutions of compressible N-S equations

For a given geometry of the flow domain the problem is to find
the velocity field u and the gas density ̺ satisfying the following
equations along with the boundary conditions

∆u + λ∇ div u = R̺u · ∇u +
R
δ
∇p(̺) in Ω,

div(̺u) = 0 in Ω,

u = U on Σ, u = 0 on ∂S,

̺ = ̺0 on Σin,

where the pressure p = p(̺) is a smooth, strictly monotone
function of the density, ǫ =

√
δ is the Mach number, R is the

Reynolds number, λ is the viscosity ratio, and ̺0 is a positive
constant.
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Preliminary numerical results

Shape sensitivity analysis of approximate solutions

The analysis is performed in the following way (SIMA, 2008).

Solutions of compressible perturbations of the Stokes
boundary value problem are called approximate solutions
of our problem. The boundary value problem for the
approximate solutions is defined in an appropriate way.

The shape perturbations Ωε = B \ Sε are introduced, and
the boundary value problem in variable domain is
transported to the fixed domain Ω. The existence of weak
material derivatives for the approximate solutions is shown.

The adjoint state is defined and the shape differentiability
of the drag functional is shown. It is shown that the shape
gradient is given by a function. Therefore, the levelset
method can be used for numerical solution.

J. Sokolowski Compressible Navier-Stokes



Preliminary numerical results

Shape sensitivity analysis of approximate solutions

The analysis is performed in the following way (SIMA, 2008).

Solutions of compressible perturbations of the Stokes
boundary value problem are called approximate solutions
of our problem. The boundary value problem for the
approximate solutions is defined in an appropriate way.

The shape perturbations Ωε = B \ Sε are introduced, and
the boundary value problem in variable domain is
transported to the fixed domain Ω. The existence of weak
material derivatives for the approximate solutions is shown.

The adjoint state is defined and the shape differentiability
of the drag functional is shown. It is shown that the shape
gradient is given by a function. Therefore, the levelset
method can be used for numerical solution.

J. Sokolowski Compressible Navier-Stokes



Preliminary numerical results

Shape sensitivity analysis of approximate solutions

The analysis is performed in the following way (SIMA, 2008).

Solutions of compressible perturbations of the Stokes
boundary value problem are called approximate solutions
of our problem. The boundary value problem for the
approximate solutions is defined in an appropriate way.

The shape perturbations Ωε = B \ Sε are introduced, and
the boundary value problem in variable domain is
transported to the fixed domain Ω. The existence of weak
material derivatives for the approximate solutions is shown.

The adjoint state is defined and the shape differentiability
of the drag functional is shown. It is shown that the shape
gradient is given by a function. Therefore, the levelset
method can be used for numerical solution.

J. Sokolowski Compressible Navier-Stokes



Preliminary numerical results

Geometrical domain perturbations

We start with description of our framework for shape sensitivity
analysis, or more general, for well-posedness of compressible
N-S equations. To this end we choose the vector field
T ∈ C2(R3)3 vanishing in the vicinity of Σ, and define the
mapping

y = x + εT(x),

which describes the perturbation of the shape of the obstacle.
Once, the result on differentiability of solutions to N-S equations
with respect to ε→ 0 is proved, we consider the trace of the
mapping T on the boundary ∂S of the obstacle S,

T(x) = f (x)n(x) for x ∈ ∂S.

The function f (x), x ∈ ∂S describes the boundary variations
∂Sε in the normal direction n(x), x ∈ ∂S.
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Preliminary numerical results

Boundary shape gradient

We want to identify the shape gradient

g(x), x ∈ ∂S

from the complicated expression obtained in terms of the
material derivatives of the solutions to N-S equations:

∫

∂S
g(x)f (x)ds :=

d
dε

JD(Sε)
∣

∣

∣

ε=0
= Le(T) + Lu(w, ω, ψ)

where Le,Lu are the geometrical and dynamical parts of the

shape derivative d
dε

JD(Sε)
∣

∣

∣

ε=0
.
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Preliminary numerical results

Boundary shape gradient

To this end the mapping Tτ (x) is introduced in such a way that
the mapping is an extension of the trace f (x)n(x) given on
x ∈ ∂S, and with τ → 0 the support of Tτ (x) tends to ∂S. In
such a way

∫

∂S g(x)f (x)ds can be obtained as the singular limit
of the volume integral defined in Ω

Le(Tτ ) + Lu(wτ , ωτ , ψτ ) =

∫

Ω

Fτ (x)dx →
∫

∂S
g(x)f (x)ds

the functions (wτ , ωτ , ψτ ) → (h,̟, υ) are defined by the
so-called adjoint system for the material derivatives, and in the
limit for τ → 0 by the shape derivatives. In this way we can
obtain also the boundary value problem for the shape
derivatives for solutions of the direct problem as well as of the
adjoint state.
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Preliminary numerical results

Fixed domain setting

The solutions of NSE in the perturbed domain

Ωε = Tε(Ω) = (I + εT)(Ω) =

normal shift of the obstacle boundary = ”Ω + εf n∂S”

are denoted by

ūε(y) = ūε(x + εT(x)), ¯̺ε(y) = ¯̺ε(x + εT(x))
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Preliminary numerical results

Fixed domain formulation

We introduce the functions uε(x) and ̺ε(x) defined in the
unperturbed domain Ω by the formulae

uε(x) = Nūε(x + εT(x)), ̺ε(x) = ¯̺ε(x + εT(x)),

where
N(x) = [det (I + εT′(x))(I + εT′(x))]−1.

is the adjugate matrix of the Jacobi matrix I + εT′. Furthermore,
we also use the notation g(x) =

√
det N. The matrices N(x)

depends analytically upon the small parameter ε and

N = I + εD(x) + ε2D1(ε, x),

where D = div TI − T′.
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Preliminary numerical results

Fixed domain formulation

For uε, ̺ε, the following boundary value problem is obtained

∆uε +∇
(

λg−1 div uε −
R
δ

p(̺ε)
)

= A uε + RB(̺ε,uε,uε) in Ω,

div
(

̺εuε

)

= 0 in Ω,

uε = U on Σ, uε = 0 on ∂S,

̺ε = ̺0 on Σin.
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Preliminary numerical results

Notation

Here, the linear operator A and the nonlinear mapping B are
defined in terms of N,

A (u) = ∆u − N−1 div
(

g−1NN∗∇(N−1u)
)

,

B(̺,u,w) = ̺(N∗)−1
(

u ∇
(

N−1w
)

)

.
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Preliminary numerical results

Sensitivity analysis

The specific structure of the matrix N does not play any
particular role in the analysis. Therefore, we consider a general
problem of the existence, uniqueness and dependence on
coefficients of the solutions to compressible NSE under the
assumption that N is a given matrix-valued function which is
close, in an appropriate norm, to the identity mapping I and
coincides with I in the vicinity of Σ. We consider the
perturbations of the obstacle S only. We write u and ̺ for uε

and ̺ε, when studying the well-posedness and dependence on
N. Before formulation of main results we write the governing
equation in more transparent form using the change of
unknown functions proposed by Padula.
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Preliminary numerical results

We introduce the effective viscous pressure

q =
R
δ

p(̺) − λg−1 div u,

and rewrite equations in the equivalent form

∆u −∇q = A (u) + RB(̺,u,u) in Ω, (4a)

div u = aσ0p(̺) − gq
λ

in Ω, (4b)

u · ∇̺+ gσ0p(̺) ̺ =
gq
λ
̺ in Ω, (4c)

u = U on Σ, u = 0 on ∂S, (4d)

̺ = ̺0 on Σin. (4e)

where σ0 = R/(λδ).
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Preliminary numerical results

In the new variables (u,q, ̺) the expression for the force J
reads

J = −
∫

Ω

[

g−1(N∗∇(Nu)+∇(Nu)∗N−div u
)

−q−R̺u⊗u
]

N∗∇η dx .

where η ∈ C∞(Ω) is an arbitrary function, which is equal to 1 in
an open neighborhood of the obstacle S and 0 in a vicinity of Σ.
The value of J is independent of the choice of the function η.
We assume that λ≫ 1 and R ≪ 1, which corresponds to
almost incompressible flow with low Reynolds number.
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Preliminary numerical results

In such a case, the approximate solutions to compressible
Navier-Stokes equations can be chosen in the form (̺0,u0,q0),
where ̺0 is a constant in the boundary conditions, and (u0,q0)
is a solution to the Stokes equations,

∆u0 −∇q0 = 0, div u0 = 0 in Ω, (5)

u0 = U on Σ, u0 = 0 on ∂S, Πq0 = q0 .

In our notations Π is the projector,

Πu = u − 1
measΩ

∫

Ω

u dx .

Equations (5) can be obtained as the limit of equations (4) for
the passage λ→ ∞, R → 0.
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Preliminary numerical results

It follows from the standard elliptic theory that for the boundary
∂Ω ∈ C∞, we have (u0,q0) ∈ C∞(Ω). We look for solutions to
problem (4) in the form

u = u0 + v, ̺ = ̺0 + ϕ, q = q0 + λσ0p(̺0) + π + λm, (6)

with the unknowns functions ϑ = (v, π, ϕ) and the unknown
constant m. Substituting (6) into (4) we obtain the following
boundary problem for ϑ,

∆v −∇π = A (u) + RB(̺,u,u) in Ω,

div v = g
( σ

̺0
ϕ− Ψ[ϑ] − m

)

in Ω,

u · ∇ϕ+ σϕ = Ψ1[ϑ] + mg̺ in Ω,

v = 0 on ∂Ω, ϕ = 0 on Σin, Ππ = π,

where
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Preliminary numerical results

Ψ1[ϑ] = g
(

̺Ψ[ϑ] − σ

̺0
ϕ2

)

+ σϕ(1 − g),

Ψ[ϑ] =
q0 + π

λ
− σ

p′(̺0)̺0
H(ϕ),

σ = σ0p′(̺0)̺0, H(ϕ) = p(̺0 + ϕ) − p(̺0) − p′(̺0)ϕ,

the vector field u and the function ̺ are given by (6).
Finally, we specify the constant m. In our framework, in contrast
to the case of homogeneous boundary problem, the solution to
such a problem is not trivial.
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Preliminary numerical results

Note that, since div v is of the null mean value, the right-hand
side of equation

u · ∇ϕ+ σϕ = Ψ1[ϑ] + mg̺ in Ω,

must satisfy the compatibility condition

m
∫

Ω

g dx =

∫

Ω

g
( σ

̺0
ϕ− Ψ[ϑ]

)

dx ,

which formally determines m. This choice of m leads to
essential mathematical difficulties.
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Preliminary numerical results

Hence, the question of solvability of the linearized equations
can be reduced to the question of solvability of the boundary
value problem for nonlocal transport equation

u∇ϕ+ σΠϕ = f ,

which is very difficult because of the loss of maximum principle.
In fact, this question is concerned with the problem of the
control of the total gas mass in compressible flows. Recall that
the absence of the mass control is the main obstacle for
proving the global solvability of inhomogeneous boundary
problems for compressible Navier-Stokes equations, we refer to
the monograph by P.-L. Lions for discussion. In order to cope
with this difficulty we write the compatibility condition in a
sophisticated form, which allows us to control the total mass of
the gas.
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Preliminary numerical results

Compability conditions

To this end we introduce the auxiliary function ζ satisfying the
equations

− div(uζ) + σζ = σg in Ω, ζ = 0 on Σout, (7)

and fix the constant m as follows

m = κ

∫

Ω

(̺−1
0 Ψ1[ϑ]ζ−gΨ[ϑ]) dx , κ =

(

∫

Ω

g(1−ζ−̺−1
0 ζϕ) dx

)−1
.

(8)
In this way the auxiliary function ζ becomes an integral part of
the solution to the boundary value problem.
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Preliminary numerical results

Now, our aim is to prove the existence and uniqueness of
solutions to the boundary value problem and investigate the
dependence of the solutions on matrices N.
The existence and uniqueness of small solutions is shown
under the following geometrical conditions.
Geometrical conditions on the flow region. We assume that a
surface Σ = Σin ∪ Σout ∪ Γ and a given vector field U satisfy the
following conditions, referred to as the emergent vector field
condition .
Remark The important particular case, e.g., for the numerical
analysis, is the case of the hold-all domain strictly convex, and
of the constant boundary vector field for the velocity, in such a
case the emergent vector field condition is satisfied and the
geometrical part of the drag shape gradient is null.
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Preliminary numerical results

Emergent field condition

In the general case, the condition on the solvability of the first
boundary value problem in a bounded domain can be given as
follows.
The set Γ is a a closed C∞ one-dimensional manifold.
Moreover, there is a positive constant c such that

U · ∇(U · n) > c > 0 on Γ. (9)

Since the vector field U is tangent to ∂Ω on Γ, the quantity in
the left-hand side of (9) is well defined.
This condition has simple geometric interpretation, that U · n
only vanishes up to the first order at Γ, and for each point
P ∈ Γ, the vector U(P) points to the part of ∂Ω where U is an
exterior vector field.
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Preliminary numerical results

Small perturbations of approximate solutions

The existence of small perturbations of approximate solutions
is proved by the application of the Schauder fixed point
theorem. Next step, is the proof of stability of such solutions
with respect to the perturbations of the differential operators by
the matrix function N which is closed to the identity matrix. The
result obtained furnishes the so-called material derivatives of
the solutions to the compressible Navier-Stokes equations as
well as to the shape differentiability of the drag functional.
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Preliminary numerical results

Material derivatives

We have the boundary value problem for compressible Navier
Stokes equations in fixed domain, with coefficients depending
on the matrix N, it means on the small parameter ε. Thus, we
are in position to evaluate the material derivatives of solutions
and, as a result, the shape gradient of the drag functional.
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Preliminary numerical results

Finite differences

Recall that

u = u0 + v, ̺ = ̺0 + ϕ, q = q0 + λσ0p(̺0) + π + λm, (10)

with the unknowns functions ϑ = (v, π, ϕ) and the unknown
constant m. Denote the solution for ε = 0 by (ϑ,m, ζ), and
define the finite differences with respect to ε

(wε, ωε, ψε) = ε−1(ϑ− ϑ(ε)),

ξε = ε−1(ζ − ζ(ε)),

nε = ε−1(m − m(ε)).

The limit (w, ω, ψ, ξ,n) = lim
ε→0

(wε, ωε, ψε, ξε,nε) is a solution to

linearized equations
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Preliminary numerical results

Linearized equations

∆w −∇ω = R C0(w, ψ) + D0(D) in Ω,

div w = b0
21 ψ − b0

22 ω + b0
23 n + b0

30 d in Ω,

u∇ψ + σψ = −w · ∇ϕ+ b0
11 ψ + b0

12 ω + b0
13 n + b0

10 d in Ω,

− div(uξ) + σξ = div(ζw) + σd in Ω,

w = 0 on ∂Ω, ψ = 0 on Σin, ξ = 0 on Σout,

ω − Πω = 0, n = κ

∫

Ω

(

b0
31 ψ + b0

32 ω + b0
34 ξ + b0

30 d) dx ,

(11)

where d = 1/2 Tr D, the variable coefficients b0
ij and the

operators C0, D0, are defined by the appropriate formulae.
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Preliminary numerical results

Material derivatives

Theorem 1 There exist the limits,

wε → w weakly in H1−s,r ′

0 (Ω), nε → n in R,

ψε → ψ, ωε → ω, ξε → ξ (∗)-weakly in H
−s,r ′(Ω) as ε→ 0,

(12)

where the material derivatives, vector field w, functionals
ψ,ω, ξ, and the constant n are given by the weak solution to
linearized problem (11).
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Preliminary numerical results

Shape derivative of the drag functional

Theorem 2 There exists the shape derivative of the drag
functional in the following form

d
dε

JD(Sε)
∣

∣

∣

ε=0
= Le(T) + Lu(w, ω, ψ).
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Preliminary numerical results

Notation

The linear forms Le and Lu are required in order to define the
shape derivative of the drag functional. The first form Le is
called the geometrical part of the shape gradient. It depends on
the transformation T and the solution to the state equation. We
can show that for the strictly convex hold-all domain and for the
constant vector fields on the boundary, the form is null.
The second form Lu depends on the material derivatives of
solutions to the state equation. The adjoint state is introduced
in order to eliminate the material derivatives and derive the
standard form of the shape derivative of the drag functional.
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Preliminary numerical results

Le(T) =

∫

Ω

div T(∇u + ∇u∗ − div uI)U∞ dx−
∫

Ω

[

∇u + ∇u∗ − div u − qI − R̺u ⊗ u
]

D∇η · U∞ dx−
∫

Ω

[

D∗∇u + ∇u∗D + ∇(Du) + ∇(Du)∗
]

∇η · U∞ dx

and

Lu(w, ω, ψ) =

∫

Ω

w
[

∆ηU∞ + R̺(u · ∇η)U∞ + R̺(u · U∞)∇η
]

dx

+
〈

ω,∇η · U∞

〉

+ R
〈

ψ, (u · ∇η)(u · U∞)
〉

.
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Preliminary numerical results

Singular limits of volume integrals

Assume that the vector field

T(x) = f (x)n(x) for x ∈ ∂S.

is extended to a small neighbourhood of ∂S, the parameter of
the extension is τ .
Lemma
For any ψ ∈ C(Ω),

lim
τց0

∫

Ω

ψ(x)T′
τ (x) dx =

∫

S

ψ(x)f (x)n ⊗ n ds,

lim
τց0

∫

Ω

ψ(x)Tr T′
τ (x) dx =

∫

S

ψ(x)f (x) ds
(13)
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Preliminary numerical results

Boundary shape gradient

T(x) = f (x)n(x) for x ∈ ∂S.

It is reasonable to eliminate η and T from formulae for the
shape gradient and the adjoint state equations and reformulate
the expression for forms Le and Lu in terms of the normal shift
f (·) only.
Theorem 3 If the perturbed surface ∂Sε is defined by the
extended mapping I + εT with f ∈ C∞(∂S), then

Le(T) = 0, (14)

and

Lu(w, ψ, ω) =

∫

∂S
f (x)

[(

b10ς+b0
20g+συ+κb30

)

+(∂nh·n)(∂nu·n)
]

(15)
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with the adjoint state variables (h,g, ς, υ) satisfying the
following equations and boundary conditions

(h,̟, ς, υ, l) = (H,G,Z ,0,0) + (h̃, ˜̟ , ς̃ , υ̃, l̃), (16)

∆H −∇G − R̺ (H∇u + u∇H) = 0, (17a)

div H + λ−1ΠG = 0, (17b)

− div(uZ ) + σZ = R(u∇u) · H + b21G + b11Z , (17c)

H = 0 on Σ, H = −U on ∂S, Z = 0 on Σout. (17d)

∆h̃ −∇ ˜̟ − R̺ (h̃∇u + u∇h̃) + (Z + ς̃)∇ϕ+ ζ∇υ̃ = 0 (18a)

div h̃ − Π(b12(Z + ς̃) + λ−1Π ˜̟ = 0 (18b)
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− div(u ς̃) + σς̃ = R(u∇u) · (h̃) + b21 ˜̟ + b11ς̃ + κb13̃l (18c)

u∇υ̃ + συ̃ − κb34 l̃ = 0 (18d)
∫

Ω

b13(Z + ς̃) dx + l̃ = 0 (18e)

h̃ = 0 on ∂Ω, ς̃ = 0 on Σout, υ̃ = 0 on Σin. (18f)

In addition, there exists σ0 with the following properties. For any
σ > σ0, there are λ0 and R0, depending only on σ, ∂S and U,
so that for every R < R0 and λ > λ0 the adjoint state equations
have a solution (h,̟, ς, υ, l) ∈ W 2,2(Ω) × (W 1,2(Ω))2 × R.
The boundary shape gradient is independent on the function η
and depends only on the restriction of the transformation field
to the boundary.
The proof is based on the singular limits of volume integrals if
the supports of the transformation fields converge to the
boundary ∂S.
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Numerical example in two spatial dimensions;
Oberwolfach (2009), MMAR2009
Recall that in our framework the hydro-dynamical force acting
on the body S is defined by the formula,

J(S) = −
∫

∂S
(∇u + (∇u)T + (λ− 1)divuI − R

δ
pI)n dS.

In a frame attached to the moving body the drag is the
component of J parallel to U∞,

JD(S) = U∞ · J(S), (19)

and the lift is the component of J in the direction orthogonal to
U∞. For the fixed data, the drag can be regarded as a
functional depending on the shape of the obstacle S.
The system of compressible Navier-Stokes equations
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transforms to

∆u −∇q = R̺∇u · u

div (u) = σ0p(̺) − 1
λ

q (20)

uT∇̺+ σ0p(̺)̺− 1
λ

q̺ = 0

where σ0 = R/(λδ), σ = σ0p0γ.
Here, the effective viscous pressure is used

q =
R
δ

p(̺) − λdiv (̺u) (21)

In addition, if we introduce a smooth function η defined in Ω and
satisfying boundary conditions η = 1 on ∂S, η = 0 on Σ, then
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the expression for drag takes on the form

JD(S) = −U∞ ·
∫

Ω

(

∇u + ∇uT − div (u)I

− qI − R̺u ⊗ u
)

∇η dx .
(22)

This can be verified by integration by parts. In our case we take
η harmonic in Ω.
Assuming λ≫ 1 and R ≪ 1 (weakly compressible flow) we
may approximate solution to (20) by means of the small
perturbation with respect to the solution of the Stokes problem

∆u0 −∇q0 = 0

div(u0) = 0 (23)

u0 = U on Σ, u0 = 0 on ∂S, M(q0) = 0

where M(·) denotes mean value on Ω. We assume these
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perturbations in the form

u = u0 + v, ̺ = ̺0 + φ (24)

q = q0 + λσ0p0 + π + m (25)

where v, φ, π are unknown functions and m the unknown
constant. Taking into account (23) the system of equations for
v, φ, π is

∆v −∇π = R̺∇u · u

div(v) = σ0p(̺) − 1
λ

q (26)

uT∇φ+ σφ =
1
λ
̺(q0 + π)

− σ0̺(p − p0) + σ0p0p′(̺0)(̺− ̺0)

with boundary conditions

v = 0 on ∂Ω, φ = 0 on Σin, M(π) = 0
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and the condition M(div(v)) = 0, which translates to

m =
σ0

|Ω|

∫

Ω

[

p(̺) − p(̺0)
]

dx . (27)

It is convenient to introduce an additional equation

− div(uζ) + σζ = σ in Ω (28)

ζ = 0 on Σout

and express m

m = κ

∫

Ω

(̺−1
0 Ψ1[ϑ]ζ − gΨ[ϑ]) dx , (29)

κ =
(

∫

Ω

g(1 − ζ − ̺−1
0 ζϕ) dx

)−1
. (30)
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In order to introduce the perturbation of the obstacle we
introduce the transformation of the domain Ω by means of the
mapping

T (x) = x + εT(x) (31)

where T(x) = 0 on Σ and T|∂S describes the movement of the
boundary of S. We assumed T = [t1, t2]T in the particular form,
where ti satisfy equations

∆ti = 0 in Ω, ti = 0 on Σ (32)

ti = hi on ∂S, i = 1,2.

Here hi(x) represent the shift of the point x on ∂S. In the
sequel we denote the solutions of the same equations
(26),(27),(28) in the transformed domain Ωε = T (Ω) by v(ε),
φ(ε), π(ε), m(ε), ζ(ε). By means of the inverse transformation
T −1 all these functions may be shifted again to the unperturbed
domain Ω, together with defining equations. Therefore we may
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consider them as functions defined on Ω and formally compute
derivatives

w = lim
ε→0

1
ε
[v − v(ε)]

ω = lim
ε→0

1
ε
[π − π(ε)]

ξ = lim
ε→0

1
ε
[ζ − ζ(ε)] (33)

ψ = lim
ε→0

1
ε
[φ− φ(ε)]

n = lim
ε→0

1
ε
[m − m(ε)]

Let us denote by P the set of solutions in the unperturbed
domain, P = [v, φ, π,m, ζ]. It can be shown, that the above
defined derivatives satisfy in Ω the following system of
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equations

∆w −∇ω = F1(P,w, ψ,D)

div(w) = F2(P, ψ,n, ω,D) (34)

uT∇ψ + σψ = F3(P, ψ,n, ω,D)

−div(uξ) + σξ = F4(P, ω,D)

with boundary conditions

w = 0 on ∂Ω, ψ = 0 on Σin, ξ = 0 on Σout

as well M(ω) = 0 and

n =

∫

Ω

F5(ψ,ω, ξ,D) dx .

The matrix D characterizing the transformation is given by

D = div(T)I −∇T.
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The functions F1,F2,F3,F4,F5 are complicated expressions in
terms its arguments. For illustration we show only F1:

F1(P,w, ψ,D) = R2(φu∇u + ̺w∇u + ̺u∇w
)

+ Ru∇(Du) + RDT (u∇u)

+ div
[

(D + DT )∇u − 1
2

Tr(D)∇u
]

− D∆u − ∆(Du)

It may be proved that using these functions the expression for
the shape derivative of the drag takes on the form

d
dε

JD(Sε)|ε=0 = L1 + L2 + L3 + L4 + L5 (35)

where

L1 =

∫

Ω

div(T)(∇u + ∇uT − div(u)I)∇η · U∞ dx
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L2 = −
∫

Ω

(

∇u + ∇uT − div(u)I − qI

− R̺u ⊗ u
)

DT∇η · U∞ dx

L3 = −
∫

Ω

(

DT∇u + ∇uT D + ∇(Du)

+ ∇(Du)T )

∇η · U∞ dx

L4 =

∫

Ω

w ·
(

∆ηU∞ + R̺(u · ∇η)U∞

+ R̺(u · U∞)∇η
)

dx

L5 =

∫

Ω

[

ω∇η · U∞ + ψ(u · ∇η)(u · U∞)
]

dx

It can be shown that under reasonable regularity assumptions
v ∈ [C1(Ω)]3 and π, φ, ζ ∈ C(Ω). However, the convergence of
limits in (33) takes place in very weak spaces, see above. The
preliminary numerical computations were performed in R

2. The
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domain B constituted a ball B = B(0,R) and the initial obstacle
was S = B(0, r) with R/r = 10. The domain Ω = B \ S was
triangulated (see Fig.1) For solving the Stokes Problem (23) the
flow velocity u0 was approximated by piecewise P1 (first order
polynomial) functions on triangles, while for q0 piecewise P0

(constant) functions were used. For regularization of the
pressure q0 the penalty term containing interelement jumps
was applied. The same elements were used for approximating
v, π. The functions φ, ζ were approximated by P1 elements.
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Figure: Initial computational domain with triangulation
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However, the system (26) is nonlinear. Therefore it was solved
iteratively, using Ishikawa [2] fixed point procedure. The
right–hand sides were taken as functions of P, denoted by
R(P). As a result (26) takes on the form

P = S−1[R(P)]

where S−1 represents solving the system with given R. This
justifies using fixed point method. The Ishikawa algorithm for
finding x such that x = Φ(x) may be written as the following
iteration:

yn = (1 − βn)xn + βnΦ(xn)

xn+1 = (1 − αn)xn + αnΦ(yn)

where 0 ≤ αn, βn < 1,

lim
n→∞

αn = lim
n→∞

βn = 0
J. Sokolowski Compressible Navier-Stokes



Preliminary numerical results

and
∞
∑

n=0

αn = ∞.

In our case it was taken αn = βn = 1/
√

n + 1.
For the range of flow parameters used in computations the
convergence was quite quick. The same procedure and
approximation was used for solving the system (34), since it
has the same structure. It was convenient, because even if
w, ω, ξ, ψ enter the right-hand side linearly, the expression for n
makes iterations necessary. In the weak formulation the second
derivatives of u disappear and the particular form of D (ti
harmonic in Ω) could be exploited.
As it is easily seen, the shape derivative of the drag (35) is
computed for the particular transformation field T and resulting
matrix D. The general movement of the curve ∂S was
expressed as linear combination of ”bump” deformations, which
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were constructed in the following way.
First, the boundary ∂S was approximated by the closed,
smooth (C2) spline passing through all the discretization nodes
on ∂S and parametrized by arclength s

γ = γ(s), s ∈ [0,L], γ(sk ) = pk , k = 1 . . . ,K .

Next at each point pk = γ(sk ) the outer normal vector was
computed

nk =
Nγ

′(sk )

‖γ ′(sk )‖ , N =

[

0 −1
1 0

]

which indicated the direction of movement for this point. Finally,
the ”bump” function was defined

bk(s) = exp
[

−
(dist(s, sk )

d0

)2]
,
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where

dist(s, sk ) = min[|s − sk |,L − |s − sk |]

is the minimal distance from s to sk (remember that γ is closed)
and d0 represents the width of the ”bump”. Using this function
and taking h(p j) = bk(sj )n j , j = 1, . . . ,K one can compute the
corresponding Tk = T(h) and Dk .
Having D := Dk it was possible to solve the system (34) and
obtain the shape derivative (35). This procedure had to be
repeated K times, for each vertex on ∂S.
After performing small movements of boundary points along nk

it has been observed that in the regions of bigger curvature the
points pk tended to converge to each other, causing even the
overlap of triangles after several iteration steps. To remedy this
behavior the following procedure was used after each step.
Taking new positions of points p′

k as nodes the new spline
γ1(s) was computed, γ1(s

′
k ) = p′

k . Then the parameters s′
k
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were slightly shifted, so that the distances between neighboring
points along γ1 were equal on all the new boundary, i.e. the
new nodes were uniformly distributed. This prevented spoiling
the quality of triangulation.
In numerical computations we considered the problem of drag
minimization and, for illustration purposes only, drag
maximization. We describe briefly the numerical results given
in Figures 2-6. The results are only preliminary, since they are
obtained with few steps of the simple gradient method, with the
shape gradient numerically evaluated according to the formula
given in (35). Triangulation and computational domain is shown
in Fig.1. The flow is from the left, Reynolds number is
R = 0.01, viscosity ratio λ = 100, the flow velocity is
U1 = 1,U2 = 0 on outer boundary. The coefficient in gas law is
γ = 5/3. In order to prevent moving the obstacle toward the
boundary of the computational region, it is assumed that its
gravity center is fixed at the origin. The total volume of the
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obstacle is kept constant.
The optimized shapes after few iterations are shown. The
computations in case of drag minimization seem to converge to
some shape, in case of drag maximization the situation is
different, because the optimal shape cannot exist. The results
shown are raw, in the sense that there was no attempt to exploit
the symmetry of the problem. In view of this remark they look
satisfactory.
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Figure: Initial flow u and pressure p.
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Figure: Shape of minimal drag for rough (dashed line) and finer
discretizations. On the left history of optimization.
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Conclusions

The drag functional for compressible Navier Stokes equations
is shape differentiable. Therefore, the numerical methods of
shape optimization can be applied in order to solve such
optimal design problems like minimization of the drag and/or
maximization of the lift.
The same result can be obtained for the complete system with
the equation for the temperature, this is the subject of the
current studies since even the existence of the solutions is an
open problem.
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