

Convergence Analysis of Monte Carlo Calibration of Financial Market Models

Christoph Käbe

Universität Trier

Workshop on PDE Constrained Optimization of Certain and Uncertain Processes

June 03, 2009

Fundamentals

Focus will be on calibration of European call options

Definition 1 (European Call Option)

A European call option is the right to buy a predetermined underlying (e.g. stock) at a certain time T (maturity) for a certain price K (strike).

Fundamentals

Focus will be on calibration of European call options

Definition 1 (European Call Option)

A **European call option** is the right to buy a predetermined underlying (e.g. stock) at a certain time T (maturity) for a certain price K (strike).

Definition 2 (Price of a Call Option)

The **price of a call option** C in $t = 0$ can be calculated through

$$
C = e^{-rT} E \left(\max(S_T - K, 0) \right)
$$

where r is the risk free rate and S_T the value of the underlying at future time T.

Stochastic Differential Equation

L-dimensional system of stochastic differential equations (SDE):

$$
dY_t(x) = a(x, Y_t(x))dt + b(x, Y_t(x))dW_t
$$

where

 $x \in \mathbb{R}^P$ vector of parameters $Y_t = [S_t, Y_t^2, ..., Y_t^L] \in \mathbb{R}$ Solution of SDE $W_t = (W_t^1, ..., W_t^L) \in \mathbb{R}$ ^L Vector of Brownian motions $a: \mathbb{R}^P \times \mathbb{R}^L \to \mathbb{R}$ $\int_a^L (x, Y_t(x)) dt$ $b: \mathbb{R}^P \times \mathbb{R}^L \to \mathbb{R}^L \times \mathbb{R}^L \quad \sum_{\nu=1}^L b^{l,\nu}(x,Y_t(x))dW_t^{\nu}, l = 1,...,L$

Least Squares Problem

Continuous Optimization Problem (True Problem)

$$
\min_{x \in X} f(x) := \sum_{i=1}^{I} (C^{i}(x) - C^{i}_{obs})^{2}
$$
\nwhere $C^{i}(x) = e^{-rT_{i}}E(\max(S_{T_{i}}(x) - K_{i}, 0))$
\ns.t. $dY_{t}(x) = a(x, Y_{t}(x))dt + b(x, Y_{t}(x))dW_{t}, Y_{0} > 0$

 $X \subset \mathbb{R}^P$ convex and compact

Least Squares Problem

Continuous Optimization Problem (True Problem)

$$
\min_{x \in X} f(x) := \sum_{i=1}^{I} (C^i(x) - C^i_{\text{obs}})^2
$$
\nwhere $C^i(x) = e^{-rT_i}E(\max(S_{T_i}(x) - K_i, 0))$
\ns.t. $dY_t(x) = a(x, Y_t(x))dt + b(x, Y_t(x))dW_t, Y_0 > 0$

$X \subset \mathbb{R}^P$ convex and compact

Discretized Optimization Problem (SAA Problem)

$$
\min_{x \in X} f_{M, \Delta t, \epsilon} := \sum_{i=1}^{I} \left(C_{M, \Delta t, \epsilon}^{i}(x) - C_{\text{obs}}^{i} \right)^{2}
$$
\nwhere
$$
C_{M, \Delta t, \epsilon}^{i}(x) := e^{-rT_{i}} \frac{1}{M} \sum_{m=1}^{M} \left(\pi_{\epsilon}(s_{N_{i}, \epsilon}^{m}(x) - K_{i}) \right)
$$
\ns.t.
$$
y_{n+1, \epsilon}^{m}(x) = y_{n, \epsilon}^{m}(x) + a_{\epsilon}(x, y_{n, \epsilon}^{m}(x)) \Delta t_{n} + b_{\epsilon}(x, y_{n, \epsilon}^{m}(x)) \Delta W_{n}^{m}
$$

Smoothing Non-differentiabilities

Consider Heston's Model:

$$
dS_{t,\epsilon} = (r - \delta)S_{t,\epsilon}dt + \sqrt{v_{t,\epsilon}^{+}}S_{t,\epsilon}dW_t^1
$$

$$
dv_{t,\epsilon} = \kappa(\theta - v_{t,\epsilon}^{+})dt + \sigma\sqrt{v_{t,\epsilon}^{+}}(\rho dW_t^1 + \sqrt{1 - \rho^2}dW_t^2)
$$

Table of Contents

[Monte Carlo Calibration](#page-1-0)

2 [Convergence](#page-7-0)

[Overview](#page-7-0)

- **[Pathwise Uniqueness](#page-15-0)**
- **· [Uniform Convergence](#page-23-0)**
- **[First Order Optimality Condition](#page-30-0)**

[Conclusions](#page-35-0)

Convergence

True Problem

$$
\min_{x \in X} f(x) := \sum_{i=1}^{I} (C^i(x) - C^i_{\text{obs}})^2
$$

SAA Problem

$$
\min_{x \in X} f_{M_k, \Delta t_k, \epsilon_k} := \sum_{i=1}^I \left(C_{M_k, \Delta t_k, \epsilon_k}^i(x) - C_{\text{obs}}^i \right)^2
$$

Increase number of simulations: $M_k \uparrow \infty$ Decrease discretization step size: $\Delta t_k \downarrow 0$ Decrease smoothing parameter: $\quad \epsilon_k \downarrow 0$ \mathcal{L} $\overline{\mathcal{L}}$ \int $x_k \in X$ solutions

Convergence

True Problem

$$
\min_{x \in X} f(x) := \sum_{i=1}^{I} (C^i(x) - C^i_{\text{obs}})^2
$$

SAA Problem

$$
\min_{x \in X} f_{M_k, \Delta t_k, \epsilon_k} := \sum_{i=1}^I \left(C_{M_k, \Delta t_k, \epsilon_k}^i(x) - C_{\text{obs}}^i \right)^2
$$

Increase number of simulations: $M_k \uparrow \infty$ Decrease discretization step size: $\Delta t_k \downarrow 0$ Decrease smoothing parameter: $\quad \epsilon_k \downarrow 0$ \mathcal{L} $\overline{\mathcal{L}}$ \int $x_k \in X$ solutions X compact $\Rightarrow x_{k_l} \to x^*$ with x^* in X.

Convergence

True Problem

$$
\min_{x \in X} f(x) := \sum_{i=1}^{I} (C^i(x) - C^i_{\text{obs}})^2
$$

SAA Problem

$$
\min_{x \in X} f_{M_k, \Delta t_k, \epsilon_k} := \sum_{i=1}^I \left(C_{M_k, \Delta t_k, \epsilon_k}^i(x) - C_{\text{obs}}^i \right)^2
$$

Increase number of simulations: M^k ↑ ∞ Decrease discretization step size: ∆t^k ↓ 0 Decrease smoothing parameter: ²^k ↓ 0 x^k ∈ X solutions

X compact $\Rightarrow x_{k_l} \to x^*$ with x^* in X.

Question

 x^* solution of the true problem?

Local Minima

$$
\min_{x \in [-1;1]} f(x) := x^2
$$

\n
$$
\min_{x \in [-1;1]} f_M(x) := x^2 - M^{-1} \sin(Mx^2)
$$

$$
\min_{x \in [-1;1]} f(x) := x^2
$$

\n
$$
\min_{x \in [-1;1]} f_M(x) := x^2 - M^{-1} \sin(Mx^2)
$$

Local minima might lead to problems:

Literature Review

True Problem: SAA Problem $\min_{x \in X} h(x) := E(H(x, \omega)) \quad \min_{x \in X} h_{\mathsf{M}}(x) := \frac{1}{M} \sum_{m=1}^{M} H(x, \omega_m)$

- Shapiro (2000): Convergence if $\min h(x)$ produces global minimum
- Rubinstein & Shapiro (1993): Convergence to a critical first order point under assumption that $H(x, \omega)$ is dominated integrable and continuous
- Bastin et al. (2006): Additionally second order convergence even for stochastic constraints
- \Rightarrow Dependence on three error sources: Monte Carlo, discretization and smoothing!

Goal: First Order Optimality

Steps to be taken:

- **1** Pathwise Uniqueness of SDE
- **2** Uniform Convergence:

$$
\lim_{k \to \infty} \sup_{x \in X} |f_{\mathsf{M}_k, \Delta t_k, \epsilon_k}(x) - f(x)| = 0
$$

$$
\lim_{k \to \infty} \sup_{x \in X} \|\nabla f_{\mathsf{M}_k, \Delta t_k, \epsilon_k}(x) - \nabla f(x)\| = 0
$$

3 First Order Optimality Condition:

$$
\nabla f(x^*)^T (x - x^*) \ge 0 \quad \forall \, x \in X
$$

Convergence Pathwise Uniqueness

Table of Contents

[Monte Carlo Calibration](#page-1-0)

2 [Convergence](#page-7-0)

[Overview](#page-7-0)

• [Pathwise Uniqueness](#page-15-0)

- **· [Uniform Convergence](#page-23-0)**
- **[First Order Optimality Condition](#page-30-0)**

[Conclusions](#page-35-0)

Pathwise Uniqueness under Lipschitz Continuity

Theorem 3 (Kloeden & Platen) Under the assumptions that

There exists a constant $K_{\mathsf{Lip}}>0$ such that $\forall t\in[0,T]$ and $y\in\mathbb{R}^L$ $|a(t, y) - a(t, z)| + |b(t, y) - b(t, z)| \leq K_{\text{Lin}}|y - z|$

There exists a constant $K_{\mathsf{Grow}}>0$ such that $\forall t\in[0,T]$ and $y\in\mathbb{R}^L$ $|a(t, y)| + |b(t, y)| \leq K_{Grow}(1 + |y|)$

the stochastic differential equation

$$
dY_t = a(t, Y_t)dt + b(t, Y_t)dW_t, Y_0 \in (0, \infty).
$$

has a pathwise unique strong solution Y_t on $[0, T]$.

Problem: Lipschitz Continuity

Consider Heston's model

$$
dS_{t,\epsilon} = (r - \delta)S_{t,\epsilon}dt + \sqrt{\pi_{\epsilon}(v_{t,\epsilon})}S_{t,\epsilon}dW_t^1
$$

$$
dv_{t,\epsilon} = \kappa(\theta - \pi_{\epsilon}(v_{t,\epsilon}))dt + \sigma\sqrt{\pi_{\epsilon}(v_{t,\epsilon})}(\rho dW_t^1 + \sqrt{1 - \rho^2}dW_t^2)
$$

Lipschitz continuity for $\epsilon > 0$

Yamada Condition

Theorem 4

Let

$$
dY_{t,\epsilon} = a_{\epsilon}(t, Y_{t,\epsilon})dt + b_{\epsilon}(t, Y_{t,\epsilon})dW_t.
$$

with

$$
\begin{array}{lcl} a_{\epsilon}(t,Y_{t,\epsilon}) & = & (a^1_{\epsilon}(t,Y_{t,\epsilon}^1),...,a^L_{\epsilon}(t,Y_{t,\epsilon}^L))^T \\ b_{\epsilon}(t,Y_{t,\epsilon}) & = & \mathsf{diag}(b^1_{\epsilon}(t,Y_{t,\epsilon}^1),...,b^L_{\epsilon}(t,Y_{t,\epsilon}^L)) \end{array}
$$

If there exists a positive increasing function $\beta : [0, \infty) \to [0, \infty)$ with

$$
|b^{i}(t,x) - b^{i}(t,y)| \leq \beta(|x - y|) \quad \forall x, y \in \mathbb{R}, \quad i = 1, ..., L
$$

and

$$
\int_{0}^{\delta} \beta^{-2}(z)dz = \infty.
$$

with an arbitrarily small $\delta > 0$...

Yamada Condition (2)

... and a positive increasing concave function $\alpha : [0, \infty) \to [0, \infty)$ such that

$$
|a^{i}(t,x) - a^{i}(t,y)| \le \alpha(|x - y|) \quad \forall x, y \in \mathbb{R}, \quad i = 1, ..., L
$$

with

$$
\int\limits_0^\delta \alpha^{-1}(z)dz = \infty.
$$

with an arbitrarily small $\delta > 0$, the SDE has a pathwise unique solution.

Proof: Yamada (1971)

Yamada Condition (3)

Reconsider Heston's model

$$
dS_{t,\epsilon} = (r - \delta)S_{t,\epsilon}dt + \sqrt{\pi_{\epsilon}(v_{t,\epsilon})}S_{t,\epsilon}dW_t^1
$$

$$
dv_{t,\epsilon} = \kappa(\theta - \pi_{\epsilon}(v_{t,\epsilon}))dt + \sigma\sqrt{\pi_{\epsilon}(v_{t,\epsilon})}(\rho dW_t^1 + \sqrt{1 - \rho^2}dW_t^2)
$$

The drift is Lipschitz continuous:

$$
|a^{i}(t,x) - a^{i}(t,y)| \leq K_{\text{Lip}}|x - y| \quad \forall x, y \in \mathbb{R}, \quad i = 1, 2
$$

and the diffusion is Hölder continuous:

$$
|b^{i}(t,x) - b^{i}(t,y)| \le \sqrt{|x - y|} \quad \forall x, y \in \mathbb{R}, \quad i = 1, 2
$$

with

$$
\int\limits_0^\delta \frac{1}{K_{\text{Lip}}z}dz=\infty; \quad \int\limits_0^\delta \frac{1}{z}dz=\infty.
$$

Problem: Independent components required

Heston's model:

$$
dS_{t,\epsilon} = (r - \delta)S_{t,\epsilon}dt + \sqrt{\pi_{\epsilon}(v_{t,\epsilon})}S_{t,\epsilon}dW_t^1
$$

$$
dv_{t,\epsilon} = \kappa(\theta - \pi_{\epsilon}(v_{t,\epsilon}))dt + \sigma\sqrt{\pi_{\epsilon}(v_{t,\epsilon})}dW_t^2
$$

Problem: Independent components required

Heston's model:

$$
dS_{t,\epsilon} = (r - \delta)S_{t,\epsilon}dt + \sqrt{\pi_{\epsilon}(v_{t,\epsilon})}S_{t,\epsilon}dW_t^1
$$

$$
dv_{t,\epsilon} = \kappa(\theta - \pi_{\epsilon}(v_{t,\epsilon}))dt + \sigma\sqrt{\pi_{\epsilon}(v_{t,\epsilon})}dW_t^2
$$

Solution:

- Process $v_{t,\epsilon}$ has pathwise unique solution following Yamada's Theorem
- Insert this unique solution in process $S_{t,\epsilon}$
- Process $S_{t,\epsilon}$ has pathwise unique solution following Yamada's Theorem
- \Rightarrow Pathwise unique solution via Yamada's Theorem

Table of Contents

[Monte Carlo Calibration](#page-1-0)

2 [Convergence](#page-7-0)

- **[Overview](#page-7-0)**
- **[Pathwise Uniqueness](#page-15-0)**
- **·** [Uniform Convergence](#page-23-0)
- **[First Order Optimality Condition](#page-30-0)**

[Conclusions](#page-35-0)

Convergence Uniform Convergence

Convergence of the Problem

Reconsider:

$$
|f_{\mathsf{M},\Delta t,\epsilon}(x) - f(x)| \leq |f_{\mathsf{M},\Delta t,\epsilon}(x) - f_{\Delta t,\epsilon}(x)| \quad (1)
$$

+
$$
|f_{\Delta t,\epsilon}(x) - f_{\epsilon}(x)| \quad (2)
$$

+
$$
|f_{\epsilon}(x) - f(x)| \quad (3)
$$

Convergence Uniform Convergence

Convergence of the Problem

Reconsider:

$$
|f_{\mathsf{M},\Delta t,\epsilon}(x) - f(x)| \leq |f_{\mathsf{M},\Delta t,\epsilon}(x) - f_{\Delta t,\epsilon}(x)| \quad (1)
$$

+
$$
|f_{\Delta t,\epsilon}(x) - f_{\epsilon}(x)| \quad (2)
$$

+
$$
|f_{\epsilon}(x) - f(x)| \quad (3)
$$

Assumption:

There exists a constant $K_{\mathsf{Grow}}>0$ such that $\forall t\in[0,T]$ and $y\in\mathbb{R}^L$ $||a_{\epsilon}(t, y)|| + ||b_{\epsilon}(t, y)|| \leq K_{\text{Grow}}(1 + ||y||).$

Convergence of Smoothed and Discretized SDE

Theorem 5

Consider the SDE

$$
dY_{t,\epsilon} = a_{\epsilon}(t, Y_{t,\epsilon})dt + b_{\epsilon}(t, Y_{t,\epsilon})dW_t.
$$

and the continuously interpolated process

$$
y_{t,\epsilon} = Y_0 + \int\limits_0^t a_\epsilon(x, y_{\tau(s),\epsilon}) ds + \int\limits_0^t b_\epsilon(x, y_{\tau(s),\epsilon}) dW_s
$$

where $\tau(s) = n$, $\forall s \in [\tau_n, \tau_{n+1})$ and $n = 0, ..., N-1$. Assuming that the growth condition holds and the SDE has a pathwise unique solution it holds

$$
\lim_{\Delta t \to 0} \sup_{x \in X} E\left(|y_{t,\epsilon} - Y_{T,\epsilon}|^2\right) = 0.
$$

Proof: Kaneko & Nakao (1988)

Convergence of Smoothed SDE

Theorem 6

Assume that the growth condition and the pathwise uniqueness holds for a solution of

$$
dY_t = a(t, Y_t)dt + b(t, Y_t)dW_t
$$

and let $Y_{t,\epsilon}$ be a solution of

$$
dY_{t,\epsilon} = a_{\epsilon}(t, Y_{t,\epsilon})dt + b_{\epsilon}(t, Y_{t,\epsilon})dW_t.
$$

If a_{ϵ} and b_{ϵ} converge uniformly to a and b for $\epsilon \rightarrow 0$, i.e.

 $\lim_{\epsilon \to 0} \sup_{t \in [0, 7]}$ $t \in [0,T]$ sup $\sup_{x \in X} (|a_{\epsilon}(t,x) - a(t,x)| + ||b_{\epsilon}(t,x) - b(t,x)||) = 0.$

where $\|\cdot\|$ is a matrix norm, it holds

$$
\lim_{\epsilon \to 0} \sup_{x \in X} E\left(|Y_{t,\epsilon} - Y_t|^2 \right) = 0.
$$

Proof: Kaneko & Nakao (1988)

Dominated Integrability & Continuity

Lemma 7

Assume that the families $\{\pi(S_T(x,\omega) - K), x \in X\}$ are dominated by a Q-integrable function $\overline{P}(\omega)$. Then there exist $\overline{\Delta t} > 0$ and $\overline{\epsilon} > 0$ such that ${\pi_{\epsilon}(s_{N,\epsilon}(x,\omega) - K), x \in X}$ is dominated by a Q-integrable function for all $\Delta t \in [0, \overline{\Delta t}]$ and $\epsilon \in [0, \overline{\epsilon}]$.

Lemma 8

If the functions $\pi(S_T(\cdot,\omega) - K)$ are continuous on X for Q almost every $ω$, the functions $π_ε(s_{N,ε}(x, ω) - K)$ are continuous on X for $0 < Δt < ∞$ and $0 < \epsilon < \infty$.

Uniform Convergence

Theorem 9

Assume that the families $\{\pi(S_T(x,\omega) - K), x \in X\}$ are dominated by a Q-integrable function $\overline{P}(\omega)$ and furthermore the functions $\pi(S_T(\cdot,\omega) - K)$ are continuous on X for Q almost every ω . If additionally X is compact, then $f(x)$ is continuous on X. Furthermore $f_{\text{M,}\Delta t,\epsilon}$ converges uniformly to f on X, i.e. for given sequences $(M_k)_k \subset \mathbb{N}$, $(\Delta t_k)_k \subset \mathbb{R}_+$ and $(\epsilon_k)_k \subset \mathbb{R}_+$ satisfying $M_k \uparrow \infty$, $\Delta t_k \downarrow 0$, $\epsilon_k \downarrow 0$ it holds

$$
\lim_{k \to \infty} \sup_{x \in X} |f_{\mathsf{M}_k, \Delta t_k, \epsilon_k}(x) - f(x)| = 0.
$$

Note that the same can be shown for the gradients!

Table of Contents

[Monte Carlo Calibration](#page-1-0)

2 [Convergence](#page-7-0)

- **[Overview](#page-7-0)**
- **[Pathwise Uniqueness](#page-15-0)**
- **· [Uniform Convergence](#page-23-0)**
- **[First Order Optimality Condition](#page-30-0)**

First Order Optimality Condition

Theorem 10

Assume that the families $\{\pi(S_T(x,\omega) - K), x \in X\}$ and $\{\frac{\partial}{\partial r}$ $\frac{\partial}{\partial x_p}\pi(S_T(\cdot,\omega)-K), x\in X\},\, i=1,...,I$ are dominated by a Q-integrable function $\overline{P}(\omega)$ and furthermore the functions $\pi(S_T(\cdot,\omega)-K)$ and $\frac{\partial}{\partial x_p}\pi(S_T(\cdot,\omega)-K),\,i=1,...,I$ are continuous on X for Q almost every ω and additionally that X is compact. Further let $(M_k)_k \subset \mathbb{N}_+$, $(\Delta t_k)_k \subset \mathbb{R}_+$, $(\epsilon_k)_k \subset \mathbb{R}_+$ and $(\gamma_k)_k \subset \mathbb{R}_+$ with $\mathsf{M}_k \uparrow \infty$, Δt_k ↓ 0, ϵ_k ↓ 0 and γ_k ↓ 0 be given sequences and assume that $(x_k)_{k\in\mathbb{N}}\subset X$ is a sequence of points satisfying

$$
\nabla f(x_k)^T (x - x_k) \ge -\gamma_k \quad \forall \, x \in X.
$$

Then every limit point $x^* \in X$ of $(x_k)_k$ almost surely satisfies the first order optimality condition

$$
\nabla f(x^*)^T (x - x^*) \ge 0 \quad \forall x \in X.
$$

Convergence: Graphical Illustration

Convergence: Graphical Illustration

Convergence: Graphical Illustration

Table of Contents

[Monte Carlo Calibration](#page-1-0)

[Convergence](#page-7-0)

- **[Overview](#page-7-0)**
- **[Pathwise Uniqueness](#page-15-0)**
- **· [Uniform Convergence](#page-23-0)**
- **[First Order Optimality Condition](#page-30-0)**

[Conclusions](#page-35-0)

Conclusions

- Set up calibration problem
- Discretized via Monte Carlo, Euler-Maruyama and smoothing
- Pathwise Uniqueness for resulting SDE under Yamada Condition
- Uniform convergence of objectives under unrestrictive assumptions
- First order optimality condition satisfied for limit point x^*

Bibliography

Bastin,F., Cirillo,C. and Toint,P.L.:

Convergence Theory for Nonconvex Stochastic Programming with an Application to Mixed Logit, Mathematical Programming Series B, Vol. 108, 2006,

Rubinstein,R.Y. and Shapiro,A.: Discrete Event Systems, John Wiley, 1993

Shapiro, A.:

Stochastic Programming by Monte Carlo Simulation Methods, Stochastic Programming E-Print Series 2000,

Kaneko,H. and Nakao,S.:

A Note on Approximation for Stochastic Differential Equations, Seminaire de Probabilites, XXII, Lecture Notes in Mathematics, Vol. 1321, 1988,

Yamada, T. and Watanabe, S.:

On the Uniqueness of Solutions of Stochastic Differential Equations, Journal of Mathematics of Kyoto University, Vol 11, 1971

