

Convergence Analysis of Monte Carlo Calibration of Financial Market Models

Christoph Käbe

Universität Trier

Workshop on PDE Constrained Optimization of Certain and Uncertain Processes

June 03, 2009

Fundamentals

Focus will be on calibration of European call options

Definition 1 (European Call Option)

A **European call option** is the right to buy a predetermined underlying (e.g. stock) at a certain time T (maturity) for a certain price K (strike).

Fundamentals

Focus will be on calibration of European call options

Definition 1 (European Call Option)

A **European call option** is the right to buy a predetermined underlying (e.g. stock) at a certain time T (maturity) for a certain price K (strike).

Definition 2 (Price of a Call Option)

The price of a call option C in t = 0 can be calculated through

$$C = e^{-rT} E\left(\max(S_T - K, 0)\right)$$

where r is the risk free rate and $S_{T}% = 0.015$ the value of the underlying at future time T.

Stochastic Differential Equation

L-dimensional system of stochastic differential equations (SDE):

$$dY_t(x) = a(x, Y_t(x))dt + b(x, Y_t(x))dW_t$$

where

$x \in \mathbb{R}^P$	vector of parameters
$Y_t = [S_t, Y_t^2,, Y_t^L] \in \mathbb{R}^L$	Solution of SDE
$W_t = (W_t^1,, W_t^L) \in \mathbb{R}^L$	Vector of Brownian motions
$a: \mathbb{R}^P \times \mathbb{R}^L \to \mathbb{R}^L$	$a^l(x, Y_t(x))dt$
$b: \mathbb{R}^P \times \mathbb{R}^L \to \mathbb{R}^L \times \mathbb{R}^L$	$\sum_{\nu=1}^{L} b^{l,\nu}(x, Y_t(x)) dW_t^{\nu}, l = 1,, L$

Least Squares Problem

Continuous Optimization Problem (True Problem)

$$\begin{split} \min_{x \in X} f(x) &:= \sum_{i=1}^{I} \left(C^{i}(x) - C^{i}_{\mathsf{obs}} \right)^{2} \\ \text{where} \quad C^{i}(x) = e^{-rT_{i}} E\left(\max(S_{T_{i}}(x) - K_{i}, 0) \right) \\ \text{s.t.} \quad dY_{t}(x) = a(x, Y_{t}(x)) dt + b(x, Y_{t}(x)) dW_{t}, \ Y_{0} > 0 \end{split}$$

 $X \subset \mathbb{R}^P$ convex and compact

Least Squares Problem

Continuous Optimization Problem (True Problem)

$$\begin{split} \min_{x \in X} f(x) &:= \sum_{i=1}^{I} \left(C^{i}(x) - C^{i}_{obs} \right)^{2} \\ \text{where} \quad C^{i}(x) = e^{-rT_{i}} E\left(\max(S_{T_{i}}(x) - K_{i}, 0) \right) \\ \text{s.t.} \quad dY_{t}(x) = a(x, Y_{t}(x)) dt + b(x, Y_{t}(x)) dW_{t}, \ Y_{0} > 0 \end{split}$$

$X \subset \mathbb{R}^P$ convex and compact

Discretized Optimization Problem (SAA Problem)

$$\begin{split} \min_{x \in X} f_{M,\Delta t,\epsilon} &:= \sum_{i=1}^{I} \left(C^{i}_{M,\Delta t,\epsilon}(x) - C^{i}_{\mathsf{obs}} \right)^{2} \\ \text{where} \quad C^{i}_{M,\Delta t,\epsilon}(x) &:= e^{-rT_{i}} \frac{1}{M} \sum_{m=1}^{M} \left(\pi_{\epsilon}(s^{m}_{N_{i},\epsilon}(x) - K_{i}) \right) \\ \text{s.t.} \quad y^{m}_{n+1,\epsilon}(x) &= y^{m}_{n,\epsilon}(x) + a_{\epsilon}(x, y^{m}_{n,\epsilon}(x)) \Delta t_{n} + b_{\epsilon}(x, y^{m}_{n,\epsilon}(x)) \Delta W^{m}_{n} \end{split}$$

Smoothing Non-differentiabilities

Consider Heston's Model:

$$dS_{t,\epsilon} = (r-\delta)S_{t,\epsilon}dt + \sqrt{v_{t,\epsilon}^+}S_{t,\epsilon}dW_t^1$$

$$dv_{t,\epsilon} = \kappa(\theta - v_{t,\epsilon}^+)dt + \sigma\sqrt{v_{t,\epsilon}^+}(\rho dW_t^1 + \sqrt{1-\rho^2}dW_t^2)$$

Table of Contents

1 Monte Carlo Calibration

2 Convergence

Overview

- Pathwise Uniqueness
- Uniform Convergence
- First Order Optimality Condition

B) Conclusions

Convergence

True Problem

$$\min_{x \in X} f(x) := \sum_{i=1}^{I} \left(C^{i}(x) - C^{i}_{obs} \right)^{2}$$

SAA Problem

$$\min_{x \in X} f_{M_k, \Delta t_k, \epsilon_k} := \sum_{i=1}^{I} \left(C^i_{M_k, \Delta t_k, \epsilon_k}(x) - C^i_{\mathsf{obs}} \right)^2$$

Increase number of simulations: $M_k \uparrow \phi$ Decrease discretization step size: $\Delta t_k \downarrow$ Decrease smoothing parameter: $\epsilon_k \downarrow 0$

$$\left. \begin{array}{c} M_k \uparrow \infty \\ \Delta t_k \downarrow 0 \\ \epsilon_k \downarrow 0 \end{array} \right\} x_k \in X \text{ solutions}$$

`

Convergence

True Problem

$$\min_{x \in X} f(x) := \sum_{i=1}^{I} \left(C^{i}(x) - C^{i}_{obs} \right)^{2}$$

SAA Problem

$$\min_{x \in X} f_{M_k, \Delta t_k, \epsilon_k} := \sum_{i=1}^{I} \left(C^i_{M_k, \Delta t_k, \epsilon_k}(x) - C^i_{\mathsf{obs}} \right)^2$$

Increase number of simulations: $M_k \uparrow \infty$ Decrease discretization step size: $\Delta t_k \downarrow 0$ Decrease smoothing parameter: $\epsilon_k \downarrow 0$

X compact $\Rightarrow x_{k_l} \rightarrow x^*$ with x^* in X.

`

Convergence

True Problem

$$\min_{x \in X} f(x) := \sum_{i=1}^{I} \left(C^{i}(x) - C^{i}_{obs} \right)^{2}$$

SAA Problem

$$\min_{x \in X} f_{M_k, \Delta t_k, \epsilon_k} := \sum_{i=1}^{I} \left(C^i_{M_k, \Delta t_k, \epsilon_k}(x) - C^i_{\mathsf{obs}} \right)^2$$

Increase number of simulations:
$$M_k \uparrow \infty$$

Decrease discretization step size: $\Delta t_k \downarrow 0$
Decrease smoothing parameter: $\epsilon_k \downarrow 0$

X compact $\Rightarrow x_{k_l} \rightarrow x^*$ with x^* in X.

Question

 x^* solution of the true problem?

Local Minima

$$\min_{\substack{x \in [-1;1] \\ x \in [-1;1]}} f(x) := x^2$$
$$\min_{x \in [-1;1]} f_M(x) := x^2 - M^{-1} \sin(Mx^2)$$

Local Minima

$$\min_{x \in [-1;1]} f(x) := x^2$$

$$\min_{x \in [-1;1]} f_M(x) := x^2 - M^{-1} \sin(Mx^2)$$

Local minima might lead to problems:

Literature Review

$\begin{array}{ll} \mbox{True Problem:} & \mbox{SAA Problem} \\ \mbox{min}_{x \in X} h(x) := E(H(x, \omega)) & \mbox{min}_{x \in X} h_{\mathsf{M}}(x) := \frac{1}{M} \sum_{m=1}^{M} H(x, \omega_m) \end{array}$

- Shapiro (2000): Convergence if $\min h(x)$ produces global minimum
- Rubinstein & Shapiro (1993): Convergence to a critical first order point under assumption that $H(x,\omega)$ is dominated integrable and continuous
- Bastin *et al.* (2006): Additionally second order convergence even for stochastic constraints
- \Rightarrow Dependence on three error sources: Monte Carlo, discretization and smoothing!

Goal: First Order Optimality

Steps to be taken:

- Pathwise Uniqueness of SDE
- Oniform Convergence:

$$\lim_{k \to \infty} \sup_{x \in X} |f_{\mathsf{M}_k, \Delta t_k, \epsilon_k}(x) - f(x)| = 0$$

$$\lim_{k \to \infty} \sup_{x \in X} \|\nabla f_{\mathsf{M}_k, \Delta t_k, \epsilon_k}(x) - \nabla f(x)\| = 0$$

Sirst Order Optimality Condition:

$$\nabla f(x^*)^T(x-x^*) \ge 0 \quad \forall x \in X$$

Table of Contents

1 Monte Carlo Calibration

2 Convergence

Overview

• Pathwise Uniqueness

- Uniform Convergence
- First Order Optimality Condition

3 Conclusions

Pathwise Uniqueness under Lipschitz Continuity

Theorem 3 (Kloeden & Platen) Under the assumptions that

There exists a constant $K_{\text{Lip}} > 0$ such that $\forall t \in [0, T]$ and $y \in \mathbb{R}^L$ $|a(t, y) - a(t, z)| + |b(t, y) - b(t, z)| \le K_{\text{Lip}}|y - z|$

There exists a constant $K_{\text{Grow}} > 0$ such that $\forall t \in [0, T]$ and $y \in \mathbb{R}^L$ $|a(t, y)| + |b(t, y)| \le K_{\text{Grow}}(1 + |y|)$

the stochastic differential equation

$$dY_t = a(t, Y_t)dt + b(t, Y_t)dW_t, Y_0 \in (0, \infty).$$

has a pathwise unique strong solution Y_t on [0, T].

Problem: Lipschitz Continuity

Consider Heston's model

$$dS_{t,\epsilon} = (r-\delta)S_{t,\epsilon}dt + \sqrt{\pi_{\epsilon}(v_{t,\epsilon})}S_{t,\epsilon}dW_t^1$$

$$dv_{t,\epsilon} = \kappa(\theta - \pi_{\epsilon}(v_{t,\epsilon}))dt + \sigma\sqrt{\pi_{\epsilon}(v_{t,\epsilon})}(\rho dW_t^1 + \sqrt{1-\rho^2}dW_t^2)$$

Lipschitz continuity for $\epsilon>0$

Yamada Condition

Theorem 4

Let

$$dY_{t,\epsilon} = a_{\epsilon}(t, Y_{t,\epsilon})dt + b_{\epsilon}(t, Y_{t,\epsilon})dW_t.$$

with

$$\begin{array}{lcl} a_{\epsilon}(t,Y_{t,\epsilon}) & = & (a_{\epsilon}^{1}(t,Y_{t,\epsilon}^{1}),...,a_{\epsilon}^{L}(t,Y_{t,\epsilon}^{L}))^{T} \\ b_{\epsilon}(t,Y_{t,\epsilon}) & = & \mathsf{diag}(b_{\epsilon}^{1}(t,Y_{t,\epsilon}^{1}),...,b_{\epsilon}^{L}(t,Y_{t,\epsilon}^{L})) \end{array}$$

If there exists a positive increasing function $\beta:[0,\infty)\to [0,\infty)$ with

$$|b^i(t,x) - b^i(t,y)| \le \beta(|x-y|) \quad \forall x,y \in \mathbb{R}, \quad i = 1, ..., L$$

and

$$\int_{0}^{\delta} \beta^{-2}(z) dz = \infty.$$

with an arbitrarily small $\delta > 0 \dots$

Yamada Condition (2)

... and a positive increasing concave function $\alpha:[0,\infty)\to [0,\infty)$ such that

$$a^{i}(t,x) - a^{i}(t,y)| \le \alpha(|x-y|) \quad \forall x, y \in \mathbb{R}, \quad i = 1, ..., L$$

with

$$\int_{0}^{\delta} \alpha^{-1}(z) dz = \infty.$$

with an arbitrarily small $\delta > 0$, the SDE has a pathwise unique solution.

J

Proof: Yamada (1971)

Yamada Condition (3)

Reconsider Heston's model

$$dS_{t,\epsilon} = (r-\delta)S_{t,\epsilon}dt + \sqrt{\pi_{\epsilon}(v_{t,\epsilon})}S_{t,\epsilon}dW_t^1$$

$$dv_{t,\epsilon} = \kappa(\theta - \pi_{\epsilon}(v_{t,\epsilon}))dt + \sigma\sqrt{\pi_{\epsilon}(v_{t,\epsilon})}(\rho dW_t^1 + \sqrt{1-\rho^2}dW_t^2)$$

The drift is Lipschitz continuous:

$$|a^{i}(t,x) - a^{i}(t,y)| \le K_{\mathsf{Lip}}|x-y| \quad \forall x,y \in \mathbb{R}, \quad i = 1,2$$

and the diffusion is Hölder continuous:

$$|b^{i}(t,x) - b^{i}(t,y)| \le \sqrt{|x-y|} \quad \forall x, y \in \mathbb{R}, \quad i = 1, 2$$

with

$$\int\limits_{0}^{\delta} \frac{1}{K_{\mathsf{Lip}} z} dz = \infty; \quad \int\limits_{0}^{\delta} \frac{1}{z} dz = \infty.$$

Problem: Independent components required

Heston's model:

$$dS_{t,\epsilon} = (r-\delta)S_{t,\epsilon}dt + \sqrt{\pi_{\epsilon}(v_{t,\epsilon})}S_{t,\epsilon}dW_t^1$$

$$dv_{t,\epsilon} = \kappa(\theta - \pi_{\epsilon}(v_{t,\epsilon}))dt + \sigma\sqrt{\pi_{\epsilon}(v_{t,\epsilon})}dW_t^2$$

Problem: Independent components required

Heston's model:

$$dS_{t,\epsilon} = (r-\delta)S_{t,\epsilon}dt + \sqrt{\pi_{\epsilon}(v_{t,\epsilon})}S_{t,\epsilon}dW_t^1$$

$$dv_{t,\epsilon} = \kappa(\theta - \pi_{\epsilon}(v_{t,\epsilon}))dt + \sigma\sqrt{\pi_{\epsilon}(v_{t,\epsilon})}dW_t^2$$

Solution:

- Process $v_{t,\epsilon}$ has pathwise unique solution following Yamada's Theorem
- Insert this unique solution in process $S_{t,\epsilon}$
- Process $S_{t,\epsilon}$ has pathwise unique solution following Yamada's Theorem
- \Rightarrow Pathwise unique solution via Yamada's Theorem

Table of Contents

1 Monte Carlo Calibration

Convergence

- Overview
- Pathwise Uniqueness
- Uniform Convergence
- First Order Optimality Condition

3 Conclusions

Uniform Convergence

Convergence of the Problem

Reconsider:

$$|f_{\mathsf{M},\Delta t,\epsilon}(x) - f(x)| \leq |f_{\mathsf{M},\Delta t,\epsilon}(x) - f_{\Delta t,\epsilon}(x)| \quad (1) + |f_{\Delta t,\epsilon}(x) - f_{\epsilon}(x)| \quad (2) + |f_{\epsilon}(x) - f(x)| \quad (3)$$

Convergence of the Problem

Reconsider:

$$|f_{\mathsf{M},\Delta t,\epsilon}(x) - f(x)| \leq |f_{\mathsf{M},\Delta t,\epsilon}(x) - f_{\Delta t,\epsilon}(x)| \quad (1) + |f_{\Delta t,\epsilon}(x) - f_{\epsilon}(x)| \quad (2) + |f_{\epsilon}(x) - f(x)| \quad (3)$$

Assumption:

There exists a constant $K_{\text{Grow}} > 0$ such that $\forall t \in [0, T]$ and $y \in \mathbb{R}^L$ $\|a_{\epsilon}(t, y)\| + \|b_{\epsilon}(t, y)\| \leq K_{\text{Grow}}(1 + \|y\|).$

Convergence of Smoothed and Discretized SDE

Theorem 5

Consider the SDE

$$dY_{t,\epsilon} = a_{\epsilon}(t, Y_{t,\epsilon})dt + b_{\epsilon}(t, Y_{t,\epsilon})dW_t.$$

and the continuously interpolated process

$$y_{t,\epsilon} = Y_0 + \int_0^t a_\epsilon(x, y_{\tau(s),\epsilon}) ds + \int_0^t b_\epsilon(x, y_{\tau(s),\epsilon}) dW_s$$

where $\tau(s) = n, \forall s \in [\tau_n, \tau_{n+1})$ and n = 0, ..., N - 1. Assuming that the growth condition holds and the SDE has a pathwise unique solution it holds

$$\lim_{\Delta t \to 0} \sup_{x \in X} E\left(|y_{t,\epsilon} - Y_{T,\epsilon}|^2 \right) = 0.$$

Proof: Kaneko & Nakao (1988)

Convergence of Smoothed SDE

Theorem 6

$$dY_t = a(t, Y_t)dt + b(t, Y_t)dW_t$$

and let $Y_{t,\epsilon}$ be a solution of

$$dY_{t,\epsilon} = a_{\epsilon}(t,Y_{t,\epsilon})dt + b_{\epsilon}(t,Y_{t,\epsilon})dW_t.$$

If a_{ϵ} and b_{ϵ} converge uniformly to a and b for $\epsilon \rightarrow 0$, i.e.

 $\lim_{\epsilon \to 0} \sup_{t \in [0,T]} \sup_{x \in X} \left(|a_{\epsilon}(t,x) - a(t,x)| + ||b_{\epsilon}(t,x) - b(t,x)|| \right) = 0.$

where $\|\cdot\|$ is a matrix norm, it holds

$$\lim_{\epsilon \to 0} \sup_{x \in X} E\left(|Y_{t,\epsilon} - Y_t|^2 \right) = 0.$$

Proof: Kaneko & Nakao (1988)

Dominated Integrability & Continuity

Lemma 7

Assume that the families $\{\pi(S_T(x,\omega) - K), x \in X\}$ are dominated by a Q-integrable function $\overline{P}(\omega)$. Then there exist $\overline{\Delta t} > 0$ and $\overline{\epsilon} > 0$ such that $\{\pi_{\epsilon}(s_{N,\epsilon}(x,\omega) - K), x \in X\}$ is dominated by a Q-integrable function for all $\Delta t \in [0, \overline{\Delta t}]$ and $\epsilon \in [0, \overline{\epsilon}]$.

Lemma 8

If the functions $\pi(S_T(\cdot, \omega) - K)$ are continuous on X for Q almost every ω , the functions $\pi_{\epsilon}(s_{N,\epsilon}(x, \omega) - K)$ are continuous on X for $0 < \Delta t < \infty$ and $0 < \epsilon < \infty$.

Uniform Convergence

Theorem 9

Assume that the families $\{\pi(S_T(x,\omega) - K), x \in X\}$ are dominated by a Q-integrable function $\overline{P}(\omega)$ and furthermore the functions $\pi(S_T(\cdot,\omega) - K)$ are continuous on X for Q almost every ω . If additionally X is compact, then f(x) is continuous on X. Furthermore $f_{\mathsf{M},\Delta t,\epsilon}$ converges uniformly to f on X, i.e. for given sequences $(M_k)_k \subset \mathbb{N}$, $(\Delta t_k)_k \subset \mathbb{R}_+$ and $(\epsilon_k)_k \subset \mathbb{R}_+$ satisfying $M_k \uparrow \infty$, $\Delta t_k \downarrow 0$, $\epsilon_k \downarrow 0$ it holds

$$\lim_{k \to \infty} \sup_{x \in X} |f_{\mathsf{M}_k, \Delta t_k, \epsilon_k}(x) - f(x)| = 0.$$

Note that the same can be shown for the gradients!

Table of Contents

Monte Carlo Calibration

2 Convergence

- Overview
- Pathwise Uniqueness
- Uniform Convergence
- First Order Optimality Condition

3 Conclusions

First Order Optimality Condition

Theorem 10

Assume that the families { $\pi(S_T(x,\omega) - K), x \in X$ } and { $\frac{\partial}{\partial x_p}\pi(S_T(\cdot,\omega) - K), x \in X$ }, i = 1, ..., I are dominated by a Q-integrable function $\overline{P}(\omega)$ and furthermore the functions $\pi(S_T(\cdot,\omega) - K)$ and $\frac{\partial}{\partial x_p}\pi(S_T(\cdot,\omega) - K), i = 1, ..., I$ are continuous on Xfor Q almost every ω and additionally that X is compact. Further let $(M_k)_k \subset \mathbb{N}_+, (\Delta t_k)_k \subset \mathbb{R}_+, (\epsilon_k)_k \subset \mathbb{R}_+$ and $(\gamma_k)_k \subset \mathbb{R}_+$ with $M_k \uparrow \infty$, $\Delta t_k \downarrow 0, \epsilon_k \downarrow 0$ and $\gamma_k \downarrow 0$ be given sequences and assume that $(x_k)_{k \in \mathbb{N}} \subset X$ is a sequence of points satisfying

$$\nabla f(x_k)^T(x-x_k) \ge -\gamma_k \quad \forall x \in X.$$

Then every limit point $x^* \in X$ of $(x_k)_k$ almost surely satisfies the first order optimality condition

$$\nabla f(x^*)^T(x-x^*) \ge 0 \quad \forall x \in X.$$

Convergence: Graphical Illustration

Convergence: Graphical Illustration

Convergence: Graphical Illustration

Table of Contents

1 Monte Carlo Calibration

2) Convergence

- Overview
- Pathwise Uniqueness
- Uniform Convergence
- First Order Optimality Condition

3 Conclusions

Conclusions

- Set up calibration problem
- Discretized via Monte Carlo, Euler-Maruyama and smoothing
- Pathwise Uniqueness for resulting SDE under Yamada Condition
- Uniform convergence of objectives under unrestrictive assumptions
- First order optimality condition satisfied for limit point x^*

Bibliography

Bastin, F., Cirillo, C. and Toint, P.L.:

Convergence Theory for Nonconvex Stochastic Programming with an Application to Mixed Logit, Mathematical Programming Series B, Vol. 108, 2006,

Rubinstein, R.Y. and Shapiro, A.: Discrete Event Systems, John Wiley, 1993

Shapiro, A.:

Stochastic Programming by Monte Carlo Simulation Methods, Stochastic Programming E-Print Series 2000,

Kaneko, H. and Nakao, S.:

A Note on Approximation for Stochastic Differential Equations, Seminaire de Probabilites, XXII, Lecture Notes in Mathematics, Vol. 1321, 1988,

🚺 Yan

Yamada, T. and Watanabe, S.: On the Uniqueness of Solutions of Stochastic Differential Equations, Journal of Mathematics of Kyoto University, Vol 11, 1971

Kaebe, C., Maruhn, J. and Sachs, E.W.: Adjoint Based Monte Carlo Calibration of Financial Market Models, Journal of Finance and Stochastics (to appear)