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Universität Trier

Workshop on PDE Constrained Optimization of
Certain and Uncertain Processes

June 03, 2009
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Monte Carlo Calibration

Fundamentals

Focus will be on calibration of European call options

Definition 1 (European Call Option)

A European call option is the right to buy a predetermined underlying
(e.g. stock) at a certain time T (maturity) for a certain price K (strike).

Definition 2 (Price of a Call Option)

The price of a call option C in t = 0 can be calculated through

C = e−rT E (max(ST −K, 0))

where r is the risk free rate and ST the value of the underlying at future
time T.
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C.Käbe Convergence of Monte Carlo Calibration June 03, 2009



Monte Carlo Calibration

Stochastic Differential Equation

L-dimensional system of stochastic differential equations (SDE):

dYt(x) = a(x, Yt(x))dt + b(x, Yt(x))dWt

where

x ∈ RP vector of parameters

Yt = [St, Y
2
t , ..., Y L

t ] ∈ RL Solution of SDE

Wt = (W 1
t , ...,WL

t ) ∈ RL Vector of Brownian motions

a : RP × RL → RL al(x, Yt(x))dt

b : RP × RL → RL × RL
∑L

ν=1 bl,ν(x, Yt(x))dW ν
t , l = 1, ..., L
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Monte Carlo Calibration

Least Squares Problem

Continuous Optimization Problem (True Problem)

min
x∈X

f(x) :=
I∑

i=1

(
Ci(x)− Ci

obs

)2

where Ci(x) = e−rTiE (max(STi(x)−Ki, 0))

s.t. dYt(x) = a(x, Yt(x))dt + b(x, Yt(x))dWt, Y0 > 0

X ⊂ RP convex and compact

Discretized Optimization Problem (SAA Problem)

min
x∈X

fM,∆t,ε :=
I∑

i=1

(
Ci

M,∆t,ε(x)− Ci
obs

)2

where Ci
M,∆t,ε(x) := e−rTi 1

M

M∑
m=1

(
πε(sm

Ni,ε
(x)−Ki)

)
s.t. ym

n+1,ε(x) = ym
n,ε(x) + aε(x, ym

n,ε(x))∆tn + bε(x, ym
n,ε(x))∆Wm

n
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Monte Carlo Calibration

Smoothing Non-differentiabilities
Consider Heston’s Model:

dSt,ε = (r − δ)St,εdt +
√

v+
t,εSt,εdW 1

t

dvt,ε = κ(θ − v+
t,ε)dt + σ

√
v+
t,ε(ρdW 1

t +
√

1− ρ2dW 2
t )
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Convergence Overview
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Convergence Overview

Convergence
True Problem

min
x∈X

f(x) :=
I∑

i=1

(
Ci(x)− Ci

obs

)2

SAA Problem

min
x∈X

fMk,∆tk,εk
:=

I∑
i=1

(
Ci

Mk,∆tk,εk
(x)− Ci

obs

)2

Increase number of simulations: Mk ↑ ∞
Decrease discretization step size: ∆tk ↓ 0

Decrease smoothing parameter: εk ↓ 0

 xk ∈ X solutions

X compact ⇒ xkl
→ x∗ with x∗ in X.

Question

x∗ solution of the true problem?
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Convergence Overview

Local Minima

min
x∈[−1;1]

f(x) := x2

min
x∈[−1;1]

fM (x) := x2 −M−1 sin(Mx2)

Local minima might lead to problems:
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Convergence Overview

Literature Review

True Problem: SAA Problem

min
x∈X

h(x) := E(H(x, ω)) min
x∈X

hM(x) := 1
M

∑M
m=1 H(x, ωm)

Shapiro (2000): Convergence if min h(x) produces global minimum

Rubinstein & Shapiro (1993): Convergence to a critical first order
point under assumption that H(x, ω) is dominated integrable and
continuous

Bastin et al. (2006): Additionally second order convergence even for
stochastic constraints

⇒ Dependence on three error sources: Monte Carlo, discretization and
smoothing!
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Convergence Overview

Goal: First Order Optimality

Steps to be taken:

1 Pathwise Uniqueness of SDE

2 Uniform Convergence:

lim
k→∞

sup
x∈X

|fMk,∆tk,εk
(x)− f(x)| = 0

lim
k→∞

sup
x∈X

‖∇fMk,∆tk,εk
(x)−∇f(x)‖ = 0

3 First Order Optimality Condition:

∇f(x∗)T (x− x∗) ≥ 0 ∀x ∈ X
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Convergence Pathwise Uniqueness
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Convergence Pathwise Uniqueness

Pathwise Uniqueness under Lipschitz Continuity

Theorem 3 (Kloeden & Platen)

Under the assumptions that

There exists a constant KLip > 0 such that ∀t ∈ [0, T ] and y ∈ RL

|a(t, y)− a(t, z)|+ |b(t, y)− b(t, z)| ≤ KLip|y − z|

There exists a constant KGrow > 0 such that ∀t ∈ [0, T ] and y ∈ RL

|a(t, y)|+ |b(t, y)| ≤ KGrow(1 + |y|)

the stochastic differential equation

dYt = a(t, Yt)dt + b(t, Yt)dWt , Y0 ∈ (0,∞).

has a pathwise unique strong solution Yt on [0, T ].
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Convergence Pathwise Uniqueness

Problem: Lipschitz Continuity

Consider Heston’s model

dSt,ε = (r − δ)St,εdt +
√

πε(vt,ε)St,εdW 1
t

dvt,ε = κ(θ − πε(vt,ε))dt + σ
√

πε(vt,ε)(ρdW 1
t +

√
1− ρ2dW 2

t )

Lipschitz continuity for ε > 0
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Convergence Pathwise Uniqueness

Yamada Condition

Theorem 4

Let
dYt,ε = aε(t, Yt,ε)dt + bε(t, Yt,ε)dWt.

with
aε(t, Yt,ε) = (a1

ε (t, Y
1
t,ε), ..., a

L
ε (t, Y L

t,ε))
T

bε(t, Yt,ε) = diag(b1
ε (t, Y

1
t,ε), ..., b

L
ε (t, Y L

t,ε))

If there exists a positive increasing function β : [0,∞) → [0,∞) with

|bi(t, x)− bi(t, y)| ≤ β(|x− y|) ∀x, y ∈ R, i = 1, ..., L

and
δ∫

0

β−2(z)dz = ∞.

with an arbitrarily small δ > 0 ...
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Convergence Pathwise Uniqueness

Yamada Condition (2)

... and a positive increasing concave function α : [0,∞) → [0,∞) such
that

|ai(t, x)− ai(t, y)| ≤ α(|x− y|) ∀x, y ∈ R, i = 1, ..., L

with
δ∫

0

α−1(z)dz = ∞.

with an arbitrarily small δ > 0, the SDE has a pathwise unique solution.

Proof: Yamada (1971)
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Convergence Pathwise Uniqueness

Yamada Condition (3)
Reconsider Heston’s model

dSt,ε = (r − δ)St,εdt +
√

πε(vt,ε)St,εdW 1
t

dvt,ε = κ(θ − πε(vt,ε))dt + σ
√

πε(vt,ε)(ρdW 1
t +

√
1− ρ2dW 2

t )

The drift is Lipschitz continuous:

|ai(t, x)− ai(t, y)| ≤ KLip|x− y| ∀x, y ∈ R, i = 1, 2

and the diffusion is Hölder continuous:

|bi(t, x)− bi(t, y)| ≤
√
|x− y| ∀x, y ∈ R, i = 1, 2

with
δ∫

0

1
KLipz

dz = ∞;

δ∫
0

1
z
dz = ∞.
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Convergence Pathwise Uniqueness

Problem: Independent components required

Heston’s model:

dSt,ε = (r − δ)St,εdt +
√

πε(vt,ε)St,εdW 1
t

dvt,ε = κ(θ − πε(vt,ε))dt + σ
√

πε(vt,ε)dW 2
t

Solution:

Process vt,ε has pathwise unique solution following Yamada’s Theorem

Insert this unique solution in process St,ε

Process St,ε has pathwise unique solution following Yamada’s
Theorem

⇒ Pathwise unique solution via Yamada’s Theorem
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Convergence Uniform Convergence
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Convergence Uniform Convergence

Convergence of the Problem

Reconsider:

|fM,∆t,ε(x)− f(x)| ≤ |fM,∆t,ε(x)− f∆t,ε(x)| (1)

+ |f∆t,ε(x)− fε(x)| (2)

+ |fε(x)− f(x)| (3)

Assumption:

There exists a constant KGrow > 0 such that ∀t ∈ [0, T ] and y ∈ RL

‖aε(t, y)‖+ ‖bε(t, y)‖ ≤ KGrow(1 + ‖y‖).
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Convergence Uniform Convergence

Convergence of Smoothed and Discretized SDE

Theorem 5

Consider the SDE

dYt,ε = aε(t, Yt,ε)dt + bε(t, Yt,ε)dWt.

and the continuously interpolated process

yt,ε = Y0 +

t∫
0

aε(x, yτ(s),ε)ds +

t∫
0

bε(x, yτ(s),ε)dWs

where τ(s) = n, ∀s ∈ [τn, τn+1) and n = 0, ..., N − 1. Assuming that the
growth condition holds and the SDE has a pathwise unique solution it
holds

lim
∆t→0

sup
x∈X

E
(
|yt,ε − YT,ε|2

)
= 0.

Proof: Kaneko & Nakao (1988)
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Convergence Uniform Convergence

Convergence of Smoothed SDE

Theorem 6

Assume that the growth condition and the pathwise uniqueness holds for a
solution of

dYt = a(t, Yt)dt + b(t, Yt)dWt

and let Yt,ε be a solution of

dYt,ε = aε(t, Yt,ε)dt + bε(t, Yt,ε)dWt.

If aε and bε converge uniformly to a and b for ε → 0, i.e.

lim
ε→0

sup
t∈[0,T ]

sup
x∈X

(|aε(t, x)− a(t, x)|+ ‖bε(t, x)− b(t, x)‖) = 0.

where ‖ · ‖ is a matrix norm, it holds

lim
ε→0

sup
x∈X

E
(
|Yt,ε − Yt|2

)
= 0.

Proof: Kaneko & Nakao (1988)
C.Käbe Convergence of Monte Carlo Calibration June 03, 2009



Convergence Uniform Convergence

Dominated Integrability & Continuity

Lemma 7

Assume that the families {π(ST (x, ω)−K), x ∈ X} are dominated by a
Q-integrable function P (ω). Then there exist ∆t > 0 and ε > 0 such that
{πε(sN,ε(x, ω)−K), x ∈ X} is dominated by a Q-integrable function for
all ∆t ∈ [0, ∆t] and ε ∈ [0, ε].

Lemma 8

If the functions π(ST (·, ω)−K) are continuous on X for Q almost every
ω, the functions πε(sN,ε(x, ω)−K) are continuous on X for 0 < ∆t < ∞
and 0 < ε < ∞.
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Convergence Uniform Convergence

Uniform Convergence

Theorem 9

Assume that the families {π(ST (x, ω)−K), x ∈ X} are dominated by a
Q-integrable function P (ω) and furthermore the functions
π(ST (·, ω)−K) are continuous on X for Q almost every ω. If additionally
X is compact, then f(x) is continuous on X. Furthermore fM,∆t,ε

converges uniformly to f on X, i.e. for given sequences (Mk)k ⊂ IN ,
(∆tk)k ⊂ R+ and (εk)k ⊂ R+ satisfying Mk ↑ ∞, ∆tk ↓ 0, εk ↓ 0 it holds

lim
k→∞

sup
x∈X

|fMk,∆tk,εk
(x)− f(x)| = 0.

Note that the same can be shown for the gradients!
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Convergence First Order Optimality Condition
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C.Käbe Convergence of Monte Carlo Calibration June 03, 2009



Convergence First Order Optimality Condition

First Order Optimality Condition

Theorem 10

Assume that the families {π(ST (x, ω)−K), x ∈ X} and
{ ∂

∂xp
π(ST (·, ω)−K), x ∈ X}, i = 1, ..., I are dominated by a

Q-integrable function P (ω) and furthermore the functions
π(ST (·, ω)−K) and ∂

∂xp
π(ST (·, ω)−K), i = 1, ..., I are continuous on X

for Q almost every ω and additionally that X is compact. Further let
(Mk)k ⊂ N+, (∆tk)k ⊂ R+, (εk)k ⊂ R+ and (γk)k ⊂ R+ with Mk ↑ ∞,
∆tk ↓ 0, εk ↓ 0 and γk ↓ 0 be given sequences and assume that
(xk)k∈IN ⊂ X is a sequence of points satisfying

∇f(xk)T (x− xk) ≥ −γk ∀x ∈ X.

Then every limit point x∗ ∈ X of (xk)k almost surely satisfies the first
order optimality condition

∇f(x∗)T (x− x∗) ≥ 0 ∀x ∈ X.
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Convergence First Order Optimality Condition

Convergence: Graphical Illustration
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Conclusions

Conclusions

Set up calibration problem

Discretized via Monte Carlo, Euler-Maruyama and smoothing

Pathwise Uniqueness for resulting SDE under Yamada Condition

Uniform convergence of objectives under unrestrictive assumptions

First order optimality condition satisfied for limit point x∗
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