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Simulated Moving Bed Processes (SMB)

I Goal: Separation of two chemical species in a solution
I Distillation not possible
I Eg. Glucose/fructose separation, enantiomere separation

I Used in: Soft drinks, pharmacy
I Preparative chromatography:

Separation by different adsorption properties
I Simple batch form:
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Simulated Moving Bed Principle I

I Control: Port flows, switching period
I Fixed controls: Process attains cyclic/periodic steady state
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Simulated Moving Bed II

Advantages:
I Chemical: Better separation properties
I Economical: Continuous process
⇒ Continuous production

Goal:

I Optimize cyclic steady state (CSS)
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SMB Model

I General Rate Model (1D) [Gu, 1990, 1995]
I System of diffusion-advection-adsorption equations
I Main difficulty: Highly nonlinear coupling via

algebraic isotherm equations
I E.g. Bi-Langmuir isotherm equation

qi =
H1

i cp,i

1 +
∑2

m=1 k1
mcp,m

+
H2

i cp,i

1 +
∑2

m=1 k2
mcp,m
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Constrained Optimization Problem

I Optimize cyclic steady state (CSS)

min
y,u,T

f (y(T), u)

s.t. ∂ty = L(y, u) in [0, T]× Ω, plus BC on ∂Ω,

y(0)− Py(T) = 0,

h1(y(T)) ≥ 0, (range(hi) ⊂ Rm),

h2(u(t), T) ≥ 0, t ∈ [0, T]

I Main difficulty:
Boundary value constraint on y
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Discretize then Optimize

I Discretize states in space and controls in time
I Parametrize states in time by Shooting technique
⇒ Large scale NLP

I Solved by Inexact SQP
I Generation of forward and adjoint directional derivatives via

Internal Numerical Differentiation/Automatic Differentiation
I q: Discretized controls plus parameters and switch period
I s: Discretized initial state
I ŝ(t; s, q): Parametrized state
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Inexact SQP (a.k.a. adjoint-based SQP)
[Griewank & Walther 2002, Diehl et al. 2008, Wirsching 2006]

I SQP: Sequentially solve Quadratic Programs
with approximated Hessians

I Inexact SQP: Also approximate constraint Jacobians
I Solve QP-KKT systems in each iteration:

Hss Hsq AT
s BT

s
Hqs Hqq AT

q BT
q

As Aq 0 0
Bs Bq 0 0




∆s
∆q
−∆λ

−∆µactive

 = −


∇sL
∇qL

s− Pŝ(T; s, q)
hactive(s, q)


I Calculation of ∇L by adjoint solve
I Quasi Newton Hessian approximation H (BFGS)
I Newton-Picard projective approximation for As

(data-sparse)
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Elimination of states from QP

I Use data-sparse As to directly eliminate ∆s and
periodicity constraint from QP: ∆s = C∆q + r

I Solve small QP with standard active set QP solver
I Recover ∆s
I Recover ∆λ by KKT transformation rules

(requires one additional adjoint solve)
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Newton-Picard Approximation

I Consider discretized periodicity constraint for s with fixed q:

s− Pŝ(T; s, q) = 0

I Use Newton-type method:

Ak
s∆sk = −

(
sk − Pŝ(T; sk, q)

)
, sk+1 = sk + ∆sk

I Full Newton: Ak
s = I−Mk, where

Mk = P
dŝ
ds

(T; sk, q)

is the so called monodromy matrix
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Typical Spectrum of the SMB M
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I Cluster of EV
around 0

I Few large EV
I Idea: Calculate M

only for “slow” EV
I Picard for fast EV
I Philosophy:

High-dimensional
discretization but
low-dimensional
dynamics
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Newton-Picard [Lust et al. 1998]

I Use expensive Newton method on “slow” modes
I Use inexpensive functional (Picard) iteration

on “fast” modes
I Let orthonormal Vp ∈ Rns×p span the “slow” invariant

subspace, i.e. the p-dimensional dominant subspace of M
I Approximation of I−M:

As = I−MVpVT
p ,

I For As and A−1
s , only the action MVp is needed

I Can be evaluated by p directional forward derivatives of DE
I Algorithmically, Vp is only approximated with

a piggy-back Subspace Iteration simultaneously
with the Newton-type method

I Picard contraction can be improved by
introduction of a shift [Potschka et al. 2008]
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Local Convergence I

I By increasing p, As can be ameliorated
I Algorithmically, an estimate for the inexactness is available

from the Subspace Iteration for Vp

σr(As − (I−M)) < λp
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Local Convergence II [Wirsching et al., 2006]

Assumptions:
I w∗ = (s∗, q∗, λ∗, µ∗) KKT-point
I LICQ and strict complementarity holds in w∗

I Hk positive definite, bounded
I Exact KKT matrix K̂(wk), approximate Kk

I K−1
k uniformly bounded for all k

I There exists κ < 1 such that∥∥∥K−1
k+1

(
Kk − K̂(wk + α∆wk)

)
∆wk

∥∥∥ ≤ κ ‖∆wk‖ , ∀α ∈ [0, 1]

I Full steps
Then:

I Stationary active set and q-linear convergence
in a neighborhood of w∗ with convergence rate κ
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Complexity Analysis

Per Iteration Newton-Picard iSQP SQP
Forward solves 1 1
Forward dir. der. nu

3M+1
2 + S · p + 1 nu

M+1
2 + ns

Adjoint solves 3 (2) 0

I M control intervals (typically ≤ 20)
I p dimension of subspace (typically 1–20)
I S subspace iterations (typically 1–5)
I Effort for linear algebra negligible
I Number of solves per Newton-Picard iSQP iteration

independent of ns
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Numerical Convergence of Newton-Picard iSQP

0 20 40 60 80 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

P
rim

al
 D

ua
l E

rr
or

Iterations

 

 

p=0
p=1
p=2
p=3
p=5
p=384

Andreas Potschka Newton-Picard iSQP for time-periodic PDE Opt – 17



Summary

I Newton-Picard Inexact SQP Method:
Simultaneous approach for solution of
time-periodic PDE optimization problems

I Exploitation of low-dimensional dynamics of a
high-dimensional discretization

I Used to solve SMB application
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