Optimal control of the Stokes equations: The control constrained case under reduced regularity

Serge Nicaise¹ <u>Dieter Sirch²</u>

 $^1{\rm LAMAV},$ Université de Valenciennes et du Hainaut Cambrésis $^2{\rm Institut}$ für Mathematik und Bauinformatik, UniBw München

Workshop on PDE Constrained Optimization of Certain and Uncertain Processes Trier, June 3-5, 2009

Dieter Sirch

Model problem

We discuss the optimal control problem

$$J(\bar{u}) = \min J(u),$$

$$J(u) := F(Su, u),$$

$$F(v, u) := \frac{1}{2} ||v - v_d||_{L^2(\Omega)}^2 + \frac{\nu}{2} ||u||_{L^2(\Omega)}^2,$$

where the associated velocity v = Su to the control u is the weak solution of the state equation

$$-\Delta v + \nabla p = u \quad \text{in } \Omega$$
$$\nabla \cdot v = 0 \quad \text{in } \Omega$$
$$v = 0 \quad \text{on } \partial \Omega$$

and the control variable is constrained by

$$a \leq u(x) \leq b$$
 for a.a. $x \in \Omega$.

 $\Omega \subset \mathbb{R}^d$ is a domain with corners and/or edges.

Dieter Sirch

Universität

Results from literature

control-constrained, scalar elliptic state equation:

• Hinze, 2004:

variational-discrete approach, full regularity \rightarrow second order convergence

• Meyer, Rösch 2004:

post-processing approach, full regularity \rightarrow second order convergence

- Apel, Rösch, Winkler 2005 and Apel, Winkler 2007: post-processing and variational discrete approach, edge and/or corner singularities, isotropic mesh-grading → second order convergence
- Apel, S., Winkler 2008:

post-processing and variational discrete approach, edge singularities, anisotropic mesh-grading \rightarrow second order convergence

control-constrained, Stokes equation:

• Rösch, Vexler 2006:

post-processing approach, velocity field in $H^2(\Omega) \cap W^{1,\infty}(\Omega) \to \text{second}_{\text{universität}}$ order convergence $Universität \bigotimes München$

Weak formulation of the state equation

We introduce the spaces

$$\begin{split} X &= \left\{ v \in (H^1(\Omega))^d : v|_{\partial\Omega} = 0 \right\}, \\ M &= \left\{ p \in L^2(\Omega) : \int_{\Omega} p = 0 \right\} \end{split}$$

and the bilinear forms $a:X imes X o \mathbb{R}$ and $b:X imes M o \mathbb{R}$ as

$$a(v, arphi) := \sum_{i=1}^d \int_\Omega
abla v_i \cdot
abla arphi_i \quad ext{and} \quad b(arphi, p) := -\int_\Omega p
abla \cdot arphi.$$

The weak solution $(v, p) \in X \times M$ of the state equation is given as unique solution of

$$egin{aligned} a(v,arphi)+b(arphi,m{p})&=(u,arphi) & orallarphi\in X \ b(v,\psi)&=0 & orall\psi\in M. \ Universit extsf{undeswehr}\ Universit extsf{undeswehr}\ Winchen \end{aligned}$$

Regularity

Weighted Sobolev spaces $H^k_\omega(\Omega)^d$, k=1,2 with norm

$$\|y\|_{H^k_{\omega}(\Omega)^d} := \left(\sum_{|\alpha| \le k} \|\omega_{\alpha} D^{\alpha} y\|_{L^2(T)^d}^2\right)^{1/2}$$

where ω_{α} is a suitable positive weight depending on the concrete problem under consideration.

Assumption:

O The a priori estimate

$$\|v\|_{H^2_{\omega}(\Omega)^d} \leq c \|u\|_{L^2(\Omega)^d}$$

is valid and the embedding

$$H^2_\omega(\Omega) \hookrightarrow C^{0,\sigma}(\Omega), \quad \sigma \in (0,1)$$

holds.

Dieter Sirch

Universität (München

Discrete spaces

The approximation of

• the control *u* is contained in *U_h*, the space of piecewise constant functions,

$$U_h = \left\{ u_h \in U : u_h |_{\mathcal{T}} \in (\mathcal{P}_0)^d \text{ for all } \mathcal{T} \in \mathcal{T}_h \right\},\$$

- the pressure p is contained in a space of piecewise polynomial functions $M_h \subset M$
- the velocity v is contained in a space of piecewise polynomial functions X_h ⊂ X or X_h ⊄ X

Discretized state equation

We define the weaker bilinear forms $a_h : X_h \times X_h \to \mathbb{R}$ and $b_h : X_h \times M_h \to \mathbb{R}$ with

$$egin{aligned} &a_h(v_h,arphi_h):=\sum_{T\in\mathcal{T}_h}\sum_{i=1}^d\int_T
abla v_{h,i}\cdot
abla arphi_{h,i}, &\nabla arphi_{h,i}\cdot
abla arphi_{h,i}, &\nabla arphi_{h,i}\cdot
abla arphi_{h,i}, &\nabla arphi_{h,i}\cdot
abla arphi_{h,i}, &\nabla arphi_{h,i}\cdot
abla arphi_{h,i}\cdot
ab$$

For a given control $u_h \in U_h$ the discretized state equation reads as

Find
$$(v_h, p_h) \in X_h \times M_h$$
 such that
 $a_h(v_h, \varphi_h) + b_h(\varphi_h, p_h) = (u_h, \varphi_h) \quad \forall \varphi_h \in X_h$
 $b_h(v_h, \psi_h) = 0 \quad \forall \psi_h \in M_h.$

Universität 🎪 München

Discretized optimality system

State equation:

$$\begin{aligned} \mathsf{a}_h(\bar{\mathsf{v}}_h,\varphi_h) + \mathsf{b}_h(\varphi_h,\bar{p}_h) &= (\bar{u}_h,\varphi_h) & \forall \varphi_h \in X_h \\ \mathsf{b}_h(\mathsf{v}_h,\psi_h) &= 0 & \forall \psi_h \in M_h \end{aligned}$$

Adjoint equation:

$$\begin{aligned} a_h(\bar{w}_h,\varphi_h) - b_h(\varphi_h,\bar{r}_h) &= (\bar{v}_h - v_{d,h},\varphi_h) & \forall \varphi_h \in X_h \\ b_h(\bar{w}_h,\psi_h) &= 0 & \forall \psi_h \in M_h \end{aligned}$$

Variational inequality:

$$(\bar{w}_h + \nu \bar{u}_h, u_h - \bar{u}_h)_{L^2(\Omega)} \ge 0 \quad \forall u_h \in U_h^{ad}$$

Universität 👷 München

Assumptions on the space X_h

Onter a la construction de la construction de la construcción de la

$$\|v_h\|_{L^2(\Omega)} \leq c \|v_h\|_{X_h} \qquad \forall v_h \in X_h$$

holds where $\|\cdot\|_{X_h} = a_h(\cdot, \cdot)^{1/2}$. There exists a $p \le \frac{2d}{d-2}$, such that the inverse estimate

$$\|\varphi_h\|_{L^{\infty}(\Omega)} \leq ch^{-1} \|\varphi_h\|_{L^p(\Omega)} \qquad \forall \varphi_h \in X_h$$

is valid.

Universität 👷 München

Assumptions on the spaces X_h and M_h (1)

One consistency error estimate

$$egin{aligned} |a_h(v,arphi_h)+b_h(arphi_h,p)-(u,arphi_h)|&\leq ch\|arphi_h\|_{X_h}\|u\|_{L^2(\Omega)}\ &orall (u,arphi_h)\in L^2(\Omega) imes X_h \end{aligned}$$

holds.

• The pair (X_h, M_h) fulfills the uniform discrete inf-sup-condition, i.e. there exists a positive constant β independent of h such that

$$\inf_{\psi_h \in \mathcal{M}_h} \sup_{\varphi_h \in X_h} \frac{b(\varphi_h, \psi_h)}{\|\varphi_h\|_{X_h} \|\psi\|_M} \geq \beta.$$

Universität 🏠 München

11

Assumptions on the spaces X_h and M_h (2)

There exist interpolation operators

$$i_h^v: H^2_\omega(\Omega)^d \cap X o X_h \cap X$$

and

$$i_h^p: H^1_\omega(\Omega) \cap M \to M_h$$

such that for the solution $(v, p) \in X \times M$ of the state equation the interpolation properties

(i)
$$\|v - i_h^v v\|_{X_h} \le ch \|v\|_{H^2_{\omega}(\Omega)} \le ch \|u\|_{L^2(\Omega)}$$

(ii) $\|v - i_h^v v\|_{L^{\infty}(\Omega)} \le c \|u\|_{L^2(\Omega)}$
(iii) $\|p - i_h^p p\|_{L^2(\Omega)} \le ch \|p\|_{H^1_{\omega}(\Omega)} \le ch \|u\|_{L^2(\Omega)}$.
hold.

Universität 👷 München

Projection operators Q_h and R_h

The operator R_h projects continuous functions in the space of piecewise constant functions,

$$(R_h f)(x) := f(S_T)$$
 if $x \in T$

where S_T denotes the centroid of the element T. The operator Q_h projects L^2 -functions in the space of piecewise constant functions,

$$(Q_hg)(x) := rac{1}{|\mathcal{T}|} \int_{\mathcal{T}} g(x) \,\mathrm{d} x \ \ ext{for} \ x \in \mathcal{T}.$$

Assumptions on the operators Q_h and R_h

O The optimal control u
 and the corresponding adjoint state (w
, r
) satisfy the inequality

$$\|Q_h\bar{w}-R_h\bar{w}\|_{L^2(\Omega)}\leq ch^2\left(\|\bar{u}\|_{C^{0,\sigma}(\bar{\Omega})}+\|v_d\|_{C^{0,\sigma}(\bar{\Omega})}\right).$$

③ For the optimal control \bar{u} and all functions $\varphi_h \in X_h$ the inequality

$$(Q_h \bar{u} - R_h \bar{u}, \varphi_h)_{L^2(\Omega)} \le ch^2 \|\varphi_h\|_{L^{\infty}(\Omega)} \left(\|\bar{u}\|_{C^{0,\sigma}(\bar{\Omega})} + \|v_d\|_{C^{0,\sigma}(\bar{\Omega})} \right)$$

holds.

Universität 👷 München

Summary of assumptions

- Regularity in $H^2_{\omega}(\Omega)^d$
- Ø discrete Poincaré inequality
- inverse estimates
- consistency error estimate
- uniform discrete inf-sup-condition
- interpolation error estimates
- Estimate for $||Q_h \bar{w} R_h \bar{w}||_{L^2(\Omega)}$
- **③** Estimate for $(Q_h \bar{u} R_h \bar{u}, \varphi_h)_{L^2(\Omega)}$

Supercloseness result

The following supercloseness result $\left[\text{Meyer}/\text{Rösch 2004}\right]$ extends to our setting.

Theorem

The inequality

$$\|\bar{u}_h - R_h\bar{u}\|_U \leq ch^2 \left(\|\bar{u}\|_{C^{0,\sigma}(\bar{\Omega})^d} + \|v_d\|_{C^{0,\sigma}(\bar{\Omega})^d}\right)$$

is valid.

The proof relies on the assumption 7,

$$\|Q_h\bar{w}-R_h\bar{w}\|_{L^2(\Omega)}\leq ch^2\left(\|\bar{u}\|_{\mathcal{C}^{0,\sigma}(\bar{\Omega})}+\|\mathsf{v}_d\|_{\mathcal{C}^{0,\sigma}(\bar{\Omega})}\right)$$

Universität München

Superconvergence result

Post-processing step:

$$\tilde{u}_h = \Pi_{[u_a, u_b]} \left(-\frac{1}{\nu} \bar{w}_h \right).$$

Theorem

Assume that the assumptions 1-8 hold. Then the estimates

$$egin{aligned} \|ar{\mathbf{v}}-ar{\mathbf{v}}_h\|_U &\leq ch^2\left(\|ar{u}\|_{C^{0,\sigma}(ar{\Omega})^d}+\|\mathbf{v}_d\|_{C^{0,\sigma}(ar{\Omega})^d}
ight),\ \|ar{\mathbf{w}}-ar{\mathbf{w}}_h\|_U &\leq ch^2\left(\|ar{u}\|_{C^{0,\sigma}(ar{\Omega})^d}+\|\mathbf{v}_d\|_{C^{0,\sigma}(ar{\Omega})^d}
ight),\ \|ar{u}-ar{u}_h\|_U &\leq ch^2\left(\|ar{u}\|_{C^{0,\sigma}(ar{\Omega})^d}+\|\mathbf{v}_d\|_{C^{0,\sigma}(ar{\Omega})^d}
ight). \end{aligned}$$

are valid with a positive constant c independent of h.

Superconvergence result

Post-processing step:

$$\tilde{u}_h = \Pi_{[u_a, u_b]} \left(-\frac{1}{\nu} \bar{w}_h \right).$$

Theorem

Assume that the assumptions 1-8 hold. Then the estimates

$$egin{aligned} \|ar{\mathbf{v}}-ar{\mathbf{v}}_h\|_U &\leq ch^2\left(\|ar{u}\|_{C^{0,\sigma}(ar{\Omega})^d}+\|\mathbf{v}_d\|_{C^{0,\sigma}(ar{\Omega})^d}
ight), \ \|ar{\mathbf{w}}-ar{\mathbf{w}}_h\|_U &\leq ch^2\left(\|ar{u}\|_{C^{0,\sigma}(ar{\Omega})^d}+\|\mathbf{v}_d\|_{C^{0,\sigma}(ar{\Omega})^d}
ight), \ \|ar{u}-ar{u}_h\|_U &\leq ch^2\left(\|ar{u}\|_{C^{0,\sigma}(ar{\Omega})^d}+\|\mathbf{v}_d\|_{C^{0,\sigma}(ar{\Omega})^d}
ight). \end{aligned}$$

are valid with a positive constant c independent of h.

Idea of the proof:
$$\begin{aligned} \|\bar{v} - \bar{v}_h\|_U &= \|S\bar{u} - S_h\bar{u}_h\|_U \\ &\leq \|S\bar{u} - S_h\bar{u}\|_U + \|S_h\bar{u} - S_hR_h\bar{u}\|_U + \|S_hR_h\bar{u} - S_h\bar{u}_h\|_U. \end{aligned}$$

Dieter Sirch

Finite element error estimates

Universität 🏠 München

Example: 3D domain, anisotropic mesh grading (1)

 $\Omega = G \times Z$, where $G \subset \mathbb{R}^2$ is a bounded polygonal domain with one reentrant corner with interior angle ω and $Z := (0, z_0) \subset \mathbb{R}$ is an interval.

For $\lambda \in \mathbb{R}$ being the smallest positive solution of

$$\sin(\lambda\omega) = -\lambda\sin\omega.$$

one has ([Maz'ya,Plamenevskiĭ,83], [Apel,Nicaise,Schöberl,01])

$$\begin{split} \|v\|_{V^{2,p}_{\beta}(\Omega)^{3}} + \|p\|_{V^{1,p}_{\beta}(\Omega)} &\leq c \|u\|_{L^{p}(\Omega)}, \ \beta > 1 - \lambda \\ \|\partial_{3}v\|_{V^{1,2}_{0}(\Omega)^{3}} + \|\partial_{3}p\|_{L^{2}(\Omega)} &\leq c \|u\|_{L^{2}(\Omega)}. \end{split}$$

where

$$\|v\|_{V^{k,p}_{\beta}(\Omega)} := \left(\int_{\Omega} \sum_{|\alpha| \le k} r^{p(\beta-k+|\alpha|)} |D^{\alpha}v|^{p} \mathrm{d}x\right)^{1/p} \cdot \underbrace{\int_{\mathcal{U}} \int_{|\alpha| \le k} r^{p(\beta-k+|\alpha|)} |D^{\alpha}v|^{p} \mathrm{d}x}_{Universit{at } \underbrace{\mathbb{Q}} } \mathcal{M}^{der Bundeswehr}_{Universit{at } \underbrace{\mathbb{Q}} }$$

Dieter Sirch

Example: 3D domain, anisotropic mesh grading (2)

Let $v_d \in C^{0,\sigma}(\bar{\Omega})$, $\sigma \in (0, 1/2)$ and $\gamma > 1 - \lambda$. Then the inequality $\|r^{\gamma} \nabla P \bar{u}\|_{L^{\infty}(\Omega)^3} \leq c \left(\|\bar{u}\|_{C^{0,\sigma}(\bar{\Omega})^3} + \|v_d\|_{C^{0,\sigma}(\bar{\Omega})^3}\right)$

is valid.

Remarks:

- for non-convex domains ($\omega > \pi$): $\frac{1}{2} < \lambda < \frac{\pi}{\omega}$, d.h. $\gamma > 0$.
- for convex domains ($\omega < \pi$): $\lambda > 1 \Rightarrow W^{1,\infty}$ -regularity of the solution.
- One can weaken the condition $\omega < \frac{2}{3}\pi$ in [Rösch,Vexler '06] to $\omega < \pi$ to guarantee $W^{1,\infty}$ -regularity of the velocity field.

Example: 3D domain, anisotropic mesh grading (3)

 $\bullet\,$ anisotropic, graded mesh, grading parameter $\mu < \lambda$

$$\begin{split} h_{T,i} &\sim h^{1/\mu} & \text{ for } r_T = 0, \\ h_{T,i} &\sim h r_T^{1-\mu} & \text{ for } r_T > 0, \\ h_{T,3} &\sim h, \end{split}$$

for
$$i = 1, 2$$
 and $r_T := \inf_{(x_1, x_2) \in T} (x_1^2 + x_2^2)^{1/2}$.

• Velocity: Crouzeix-Raviart finite element space

$$X_h := \left\{ v_h \in L^2(\Omega)^3 : v_h|_T \in (\mathcal{P}_1)^3 \ \forall T, \int_F [v_h]_F = 0 \ \forall F \right\},$$

i.e. $X_h \not\subset X$.

• Pressure: piecewise constant functions,

Example: 3D domain, anisotropic mesh grading (4)

Theorem

In the described setting the assumptions 1–8 are fullfilled. Control, state and adjoint state converge with second order.

Remarks on the proof:

- Discrete Poincaré inequality is proved in [Lazaar, Nicaise 2002].
- Interpolation error estimates: use quasi-interpolant [Apel,S, 2008]
- consistency error estimate and discrete inf-sup-condition are proved in [Apel, Nicaise, Schöberl, 2001]
- For the proof of

$$\|Q_h\bar{w}-R_h\bar{w}\|_{L^2(\Omega)}\leq ch^2\left(\|\bar{u}\|_{\mathcal{C}^{0,\sigma}(\bar{\Omega})}+\|v_d\|_{\mathcal{C}^{0,\sigma}(\bar{\Omega})}\right)$$

split Ω in two parts, namely one containing the elements along the edge, the other one the elements away from the edge and use "anisotropic" regularity and $r^{\gamma}\nabla \bar{w} \in L^{\infty}(\Omega)^3$ for $\gamma > 1 - \lambda$. Universität München Numerical test: 3D domain, anisotropic mesh grading Modified functional:

$$J(\mathbf{v}, \mathbf{u}) := \frac{1}{2} \|\mathbf{v} - \mathbf{v}_d\|_{L^2(\Omega)^d}^2 + \frac{\nu}{2} \|\mathbf{u}\|_{L^2(\Omega)^d} + \int_{\partial \Omega} \frac{\partial \mathbf{v}}{\partial \mathbf{n}} g \, \mathrm{ds}$$

The functions f, g and v_d are chosen such that

$$\bar{\nu} = \bar{w} = \begin{bmatrix} x_3 r^{\lambda} \Phi_1(\varphi) \\ x_3 r^{\lambda} \Phi_2(\varphi) \\ r^{2/3} \sin \frac{2}{3} \varphi \end{bmatrix}, \quad \bar{p} = -\bar{r} = x_3 r^{\lambda-1} \Phi_p(\varphi), \quad \bar{u} = \Pi_{[-10, -0.2]} \left(-\frac{1}{\nu} \bar{w} \right)$$

with

$$\begin{split} \Phi_{1}(\varphi) &= -\sin(\lambda\varphi)\cos\omega - \lambda\sin(\varphi)\cos(\lambda(\omega-\varphi)+\varphi) \\ &+ \lambda\sin(\omega-\phi)\cos(\lambda\varphi-\varphi) + \sin(\lambda(\omega-\varphi)), \\ \Phi_{2}(\varphi) &= -\sin(\lambda\varphi)\sin\omega - \lambda\sin(\varphi)\sin(\lambda(\omega-\varphi)+\varphi) \\ &- \lambda\sin(\omega-\varphi)\sin(\lambda\varphi-\varphi), \\ \Phi_{p}(\varphi) &= 2\lambda\left[\sin((\lambda-1)\varphi+\omega) + \sin((\lambda-1)\varphi-\lambda\omega)\right]. \end{split}$$

is the exact solution for the optimal control problem.

Dieter Sirch

Universität 💮 München

Numerical test: 3D domain, anisotropic mesh grading

	$\mu = 0.4 < \lambda pprox 0.5445$		$\mu=1$	
ndof	value	rate	value	rate
14025	1.11E-02		1.38E-02	
37779	6.07E-03	1.83	8.86E-03	1.33
108600	3.19E-03	1.83	5.66E-03	1.27
362475	1.49E-03	1.89	3.46E-03	1.23
854400	8.64E-04	1.91	2.45E-03	1.20
1135464	7.20E-04	1.93	2.20E-03	1.18
1663125	5.62E-04	1.94	1.89E-03	1.17

Table: L^2 -error of the computed control \tilde{u}_h on an anisotropic, three-dimensional mesh $Universität \bigotimes_{h \in \mathcal{M}} Munchen$

Example: 2D non-convex domain, isotropic mesh grading

 $\bullet\,$ isotropic, graded mesh, grading parameter $\mu < \lambda$

wi

$$h_{ au} \sim egin{cases} h^{1/\mu} & ext{for } r_{ au} = 0, \ hr_{ au}^{1-\mu} & ext{for } 0 < r_{ au} \leq R, \ h & ext{for } r_{ au} > R. \end{cases}$$
th $r_{ au} := ext{inf}_{(x_1, x_2) \in T} (x_1^2 + x_2^2)^{1/2}.$

- different element pairs
 - $(\mathcal{P}_2^c, \mathcal{P}_0)$
 - Taylor-Hood element
 - Bernardi-Raugel-Fortin element
 - Mini-element

<u>۱</u>...

Numerical test: 2D non-convex domain, isotropic mesh grading

	$\mu = 0.4 < 100$	$\mu = 1$		
ndof	value	rate	value rate	9
10282	8.02E-04	1.94	1.16E-03 1.52	2
40562	2.08E-04	1.96	4.16E-04 1.49	9
161122	5.32E-05	1.98	1.52E-04 1.46	5
392377	2.20E-05	1.99	8.08E-05 1.42	2
642242	1.35E-05	1.99	5.73E-05 1.39	9
2564482	3.38E-06	1.99	2.25E-05 1.3	5

Table: L^2 -error of the computed control \tilde{u}_h on an isotropic, two-dimensional meshwith $(\mathcal{P}_2^c, \mathcal{P}_0)$ Universität \mathcal{M} München

Dieter Sirch

Ch. Meyer, A. Rösch

Superconvergence properties of optimal control problems SIAM J. Control Optim., 43:970–985, 2004.

M. Hinze

A variational discretization concept in control constrained optimization: the linear-quadratic case

J. ., 30:45-63, 2005.

A. Rösch, B. Vexler

Optimal control of the Stokes equations: A priori error analysis for finite element discretization with postprocessing SIAM J. Numer. Anal., 44:1903–1920, 2006.

Th. Apel, D. Sirch, G. Winkler

Error estimates for control constrained optimal control problems: Discretization with anisotropic finite element meshes Preprint SPP1253-02-06, 2008

S. Nicaise, D. Sirch

Optimal control of the Stokes equations: Conforming and non-conforming finite element methods under reduced regularity submitted