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Motivation

→ Applications from engineering and natural sciences

→ mathematical models with partial differential equations (PDEs)

→ Goals:

Numerical simulation of the process

Calibration of the mathematical model

Optimization / Optimal control of the underlying process
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Motivation

Optimization problem (infinite dimensional)

Minimize J(q, u), q ∈ Qad, u ∈ Vad

subject to
A(q, u) = 0

Discretized optimization problem

Minimize J(qh, uh), qh ∈ Qh ∩Qad , uh ∈ Vh ∩ Vad

subject to
Ah(qh, uh) = 0

dimVh, dimQh <∞
Discretization error between (q, u) and (qh, uh)

Numerical effort depends on dimVh and dimQh
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Motivation

→ Goal:

“Discretization error” ≤ tolerance

Numerical effort → min!

→ Questions:
What kind of error is important?

→ Quantity of interest: I (q, u)

How to measure/estimate this error?

→ A posteriori error estimation: I (q, u)− I (qh, uh) ≈ ηh

How to construct an appropriate discretization?

→ Adaptive choice of discretizations: locally refined meshes
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Example 1: Drag minimization

Flow around a cylinder

220 cm

41 cm

x

y
10 cm

15 cm

16 cm

15 cm

Γout
ΓOΓin Γwall

Optimization problem

Minimize J(u) = c0

∫
ΓO

n · σ(u) · d ds, σ(u) =
ν

2
(∇v +∇vT )− pI , u = (v , p)

−ν∆v + v · ∇v +∇p = 0, ∇ · v = 0 in Ω

v = vin on Γin, v = 0 on Γwall, ν∂nv − p · n = 0 on Γout

v · n = 0 on ΓO, v · τ = q on ΓO
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Example 1: Drag minimization

uncontrolled flow, J(u) ≈ 5.58 controlled flow, J(u) ≈ 5.04

Quantity of interest I (q, u) = J(u) (QI = Cost functional)

Discretization of the state variable u = (v , p) in space

Error estimation J(u)− J(uh)
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Example 2: Parameter Identification

Configuration Mathematical model

∂tθ − ∆θ = ω in (0,T )×Ω

∂ty −
1
L
∆y = −ω in (0,T )×Ω

ω =
β2

2γ
y exp

(
β(θ − 1)

1 + α(θ − 1)

)
+ Initial and bounday conditions

The state u = (θ, y) consists of temperature and concentration of the fuel

The parameter q = α has to be estimated

State equation

A(q, u) = 0
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Example 2: Parameter Identification

Comparison of an experiment and the simulation

Observation C vs. C (u)

Optimization problem

Minimize J(q, u) =
1
2
‖C (u)− C‖2Z , q ∈ Q, u ∈ V

subject to
A(q, u) = 0

Quantity of interest: I (q, u) = α

Discretization of the state variable in space and time
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Example 3: Glass cooling

Configuration Mathematical model

∂tθ − k∆θ = 1
3κ∆ρ in (0,T )×Ω

− ε2

3κ∆ρ+ κρ = 4κπaθ4 in (0,T )×Ω

1
εk θ + n · ∇θ = 1

εk q auf (0,T )× ∂Ω

3κ
2ε ρ+ n · ∇ρ = 3κ

2ε 4πaq4 auf (0,T )× ∂Ω

The state u = (θ, ρ) consist of the temperature and the radiation transfer

Die control q is the ambient temperature

State equation

A(q, u) = 0

Boris Vexler Adaptive FEM for PDE-constrained optimization June 4, 2009 13



Example 3: Glass cooling

Optimization problem

Minimize J(q, u) =

∫ T

0

∫
Ω

(θ − θd)2 dx dt +
α

2

∫ T

0
q2 dt, q ∈ Qad, u ∈ Vad

subject to
A(q, u) = 0

Control constraints

q ∈ Qad =
{

q ∈ L2(0,T )
∣∣ qa ≤ q(t) ≤ qb a. e. in (0,T )

}
State constraints

θa ≤ θ(t, x) ≤ θb and/or |∇θ(t, x)| ≤ cb

Discretization of the state variable in space and time

Discretization of the control variable in time
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Adaptive algorithm

Degrees of freedom for the choice of discretization

Temporal discretization
→ Choice of the time steps

Spatial discretization
→ Choice of spatial meshes for each time step

Control discretization
→ Choice of the discretization of the control space

Goal: Error estimators

I (q, u)− I (qσ, uσ) ≈ ηk + ηh + ηl
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Adaptive algorithm

1 Choose an initial discretization Tσ0 , set n = 0

2 Compute (qσ, uσ)

3 Evaluate ηkn , ηhn , ηln

4 if ηkn + ηhn + ηln ≤ TOL break;

5 else

ηk � ηh, ηk � ηl ⇒ Refine time discr.

ηk ≈ ηh � ηl ⇒ Refine time & space discr.

ηk ≈ ηh ≈ ηl ⇒ Refine time, space & control discr.

. . .

6 n = n + 1, go to 2

→ Refinement is based on local information from ηk , ηh, ηl
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Parabolic problems

→ State equation: ut + A(q, u) = f , u(0) = u0

Weak formulation

u ∈ X = W (0,T ; V ,V ∗) : a(q, u)(φ) = f (φ) ∀φ ∈ X

with

a(q, u)(φ) =

T∫
0

(
〈∂tu(t), φ(t)〉V ∗,V + as(q, u(t))(φ(t))

)
dt + (u(0)− u0, φ(0))

Optimization problem

Minimize J(q, u), q ∈ Qad, u ∈ X

s.t. a(q, u)(φ) = f (φ) ∀φ ∈ X
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Optimality conditions

Lagrange functional

L(q, u, z) = J(q, u) + f (z)− a(q, u)(z)

Necessary optimality conditions:

L′(q, u, z)(δq, δu, δz) = 0 ∀δq ∈ Q, ∀δu, δz ∈ X

Optimality system

a(q, u)(v) = f (v) ∀v ∈ X (state equation)

a′u(q, u)(v , z) = J ′u(q, u)(v) ∀v ∈ X (adjoint equation)

a′q(q, u)(δq, z) = J ′q(q, u)(δq) ∀δq ∈ Q (gradient equation)

→ J ′q(q, u)(δq − q)− a′q(q, u)(δq − q, z) ≥ 0 ∀δq ∈ Qad
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Optimality system

a(q, u)(v) = f (v) ∀v ∈ X (state equation)

a′u(q, u)(v , z) = J ′u(q, u)(v) ∀v ∈ X (adjoint equation)

a′q(q, u)(δq, z) = J ′q(q, u)(δq) ∀δq ∈ Q (gradient equation)

→ J ′q(q, u)(δq − q)− a′q(q, u)(δq − q, z) ≥ 0 ∀δq ∈ Qad
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Discretization concepts

Optimize-then-Discretize versus Discretize-then-Optimize

→ Optimize-then-Discretize
Build up the optimality system on the continuous level
Discretize the state, the adjoint and the gradient equations

→ Appropriate and stable discretizations of all involved equations

→ Discretize-then-Optimize
Discretize the state equation
Build up the optimality system for the discrete optimization problem

→ Preserving problem structure (symmetry of the optimality system)

−→ For a pure Galerkin discretization:

Optimize-then-Discretize = Discretize-then-Optimize

→ Exact discrete derivatives
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Space-time finite elements

Use finite elements for spatial and temporal discretization

→ Optimize-then-Discretize = Discretize-then-Optimize

→ Systematic a priori error analysis

→ Systematic a posteriori error estimation

→ Dynamic meshes

Temporal discretization: Discontinuous Galerkin methods

Time partitioning: Ī = {0} ∪ I1 ∪ I2 . . . ∪ IM with

Im = (tm−1, tm] and 0 = t0 < t1 < . . . < tM−1 < tM = T

Semidiscretized state space

X r
k = {vk ∈ L2(I ,V ) | vk

∣∣
Im
∈ Pr (Im,V ) and vk(0) ∈ H}
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Space-time finite elements

Semi-discretization in time

uk ∈ X r
k : ak(qk , uk)(φk) = f (φk) ∀φk ∈ X r

k

with

ak(qk , uk)(φk) := a(qk , uk)(φ) +

M−1∑
m=1

([uk ]m, φ
+
m)

Spatial discretization

ukh ∈ X r ,s
kh : ak(qkh, ukh)(φkh) = f (φkh) ∀φkh ∈ X r ,s

kh

with the discrete state space:

X r ,s
kh = {vkh ∈ X r

k : vkh
∣∣
Im
∈ Pr (Im,V s

h,m) and vk(0) ∈ V s
h,0}
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Space-time finite elements

→ Reinterpret Galerkin methods as time stepping schemes

dG(0) =⇒ (variant of) implicit Euler scheme
dG(r) =⇒ A-stable scheme of order r + 1

Discrete optimization problem

Minimize J(qσ, uσ), qσ ∈ Ql , uσ ∈ X r ,s
kh

subject to
ak(qσ, uσ)(φkh) = f (φkh) ∀φkh ∈ X r ,s

kh
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A posteriori error estimation

→ Goal: I (q, u)− I (qσ, uσ) ≈ ηk + ηh + ηl

→ Lagrange functional: L(q, u, z) = J(q, u) + f (z)− ak(q, u)(z)

ξ = (q, u, z) ∈ Q × X × X L′(ξ)(δξ) = 0

ξk = (qk , uk , zk) ∈ Q × Xk × Xk L′(ξk)(δξk) = 0

ξkh = (qkh, ukh, zkh) ∈ Q × Xkh × Xkh L′(ξkh)(δξkh) = 0

ξσ = (qσ, uσ, zσ) ∈ Ql × Xkh × Xkh L′(ξσ)(δξσ) = 0

Error spliting

I (q, u)− I (qσ, uσ) = I (q, u)− I (qk , uk)

+ I (qk , uk)− I (qkh, ukh)

+ I (qkh, ukh)− I (qσ, uσ)
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A posteriori error estimation

→ Goal: I (q, u)− I (qσ, uσ) ≈ ηk + ηh + ηl

Error estimation w.r.t the cost functional

J(q, u)− J(qk , uk) =
1
2
ρu(xσ)(u − ũk) +

1
2
ρz (xσ)(z − z̃k) + Rk

J(qk , uk)− J(qkh, ukh) =
1
2
ρu(xσ)(uk − ũkh) +

1
2
ρz (xσ)(zk − z̃kh) + Rkh

J(qkh, ukh)− J(qσ, uσ) =
1
2
ρq(xσ)(qkh − q̃σ) + Rσ

Residuals:

ρu(xσ)(φ) = J ′u(qσ, uσ)(φ)− a′k,u(qσ, uσ)(φ, zσ)

ρz (xσ)(φ) = f (φ)− ak(qσ, uσ)(φ)

ρq(xσ)(φ) = J ′q(qσ, uσ)(φ)− a′k,q(qσ, uσ)(φ, zσ)

Remainder terms: Rk ,Rkh,Rσ → O(‖error‖3)
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1
2
ρz (xσ)(zk − z̃kh) + Rkh

J(qkh, ukh)− J(qσ, uσ) =
1
2
ρq(xσ)(qkh − q̃σ) + Rσ

Residuals:

ρu(xσ)(φ) = J ′u(qσ, uσ)(φ)− a′k,u(qσ, uσ)(φ, zσ)

ρz (xσ)(φ) = f (φ)− ak(qσ, uσ)(φ)

ρq(xσ)(φ) = J ′q(qσ, uσ)(φ)− a′k,q(qσ, uσ)(φ, zσ)

Remainder terms: Rk ,Rkh,Rσ → O(‖error‖3)
Boris Vexler Adaptive FEM for PDE-constrained optimization June 4, 2009 28



A posteriori error estimation

→ Goal: I (q, u)− I (qσ, uσ) ≈ ηk + ηh + ηl

Error estimation w.r.t the cost functional

J(q, u)− J(qk , uk) =
1
2
ρu(xσ)(u − ũk) +
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Approximation of weights

u − ũk ≈ i (2)2k uσ − uσ

tm−1 tm tm+1

z − z̃k ≈ i (1)2k zσ − zσ

tm−1 tm tm+1

uk−ũkh ≈ i (2)2h uσ−uσ
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Numerical effort

Error estimation w.r.t the cost functional

Evaluation of residuals

Approximation of weights

Error estimation w.r.t a quantity of interest

Solution of a linear problem (∼ Newton step)

χ = (p, v , y) : L′′(q, u, z)χ = −I ′q(q, u)− I ′u(q, u)

Evaluation of residuals

Approximation of weights
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Numerical example

Configuration Mathematical model

∂tθ − ∆θ = ω in (0,T )×Ω

∂ty −
1
L
∆y = −ω in (0,T )×Ω

ω =
β2

2γ
y exp

(
β(θ − 1)

1 + α(θ − 1)

)
+ Initial and boundary conditions

Goal:
Estimation of Arrhenius parameters α using measurements θ(T , ξi ) and Y (T , ξi )

→ Quantity of interest: I (α) = α
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Numerical example

Simulation:

Optimization (Parameter identification):
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Numerical example

M Nmax ηk ηh ηk + ηh J(u)− J(ukh) Ieff

256 985 −7.8 · 10−04 4.1 · 10−05 −7.4 · 10−04 −1.7 · 10−03 2.29
396 985 −7.4 · 10−04 2.0 · 10−04 −5.4 · 10−04 −1.4 · 10−03 2.63
616 1427 −2.5 · 10−04 −3.3 · 10−04 −5.8 · 10−04 −8.7 · 10−04 1.51
872 2309 −1.0 · 10−04 −1.4 · 10−04 −2.4 · 10−04 −4.0 · 10−04 1.64
1370 3927 −5.0 · 10−05 −6.8 · 10−05 −1.2 · 10−04 −1.6 · 10−04 1.33
1528 6927 −4.6 · 10−05 −2.8 · 10−05 −7.4 · 10−05 −8.6 · 10−05 1.17
1772 14683 −4.0 · 10−05 −1.1 · 10−06 −5.2 · 10−05 −5.9 · 10−05 1.15

 1e-04

 0.001

 1e+06  1e+07  1e+08  1e+09

F
eh

le
r

Freiheitsgrade

global
lokal

dynamisch
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Numerical example

3D – laser surface hardening of steel
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Conclusions

→ Space-time finite elements methods

optimize-then-discretize = discretize-then-optimize

exact derivatives on the discrete level

→ Error estimation w.r.t. to a given quantity of interest

separation of time, space, control error

dynamic meshes

→ Extensions: problems with inequality constraints

control constraints

state constraints
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