Adaptive finite element methods for PDE-constrained optimization problems

Boris Vexler

joint work with: Dominik Meidner, Olaf Benedix, Winnifried Wollner, Michael Schmich

> Fakultät für Mathematik Technische Universität München

> > June 4, 2009

- 3 Adaptive algorithm
- Optimization problems governed by parabolic equations
- 5 Space-time finite element discretization
- 6 A posteriori error estimation
 - 7 Numerical example

2 Examples

- 3 Adaptive algorithm
- Optimization problems governed by parabolic equations
- 5 Space-time finite element discretization
- 6 A posteriori error estimation
- 7 Numerical example

- $\rightarrow\,$ Applications from engineering and natural sciences
- \rightarrow mathematical models with partial differential equations (PDEs)

- Numerical simulation of the process
- Calibration of the mathematical model
- Optimization / Optimal control of the underlying process

Motivation

Optimization problem (infinite dimensional)

Minimize
$$J(q, u)$$
, $q \in Q_{ad}$, $u \in V_{ad}$

subject to

$$A(q,u)=0$$

Discretized optimization problem

Minimize $J(q_h, u_h)$, $q_h \in Q_h \cap Q_{ad}$, $u_h \in V_h \cap V_{ad}$

subject to

 $A_h(q_h, u_h) = 0$

- dim V_h , dim $Q_h < \infty$
- Discretization error between (q, u) and (q_h, u_h)
- Numerical effort depends on dim V_h and dim Q_h

Motivation

Optimization problem (infinite dimensional)

Minimize
$$J(q, u)$$
, $q \in Q_{ad}$, $u \in V_{ad}$

subject to

$$A(q,u)=0$$

Discretized optimization problem

Minimize $J(q_h, u_h)$, $q_h \in Q_h \cap Q_{ad}$, $u_h \in V_h \cap V_{ad}$

subject to

 $A_h(q_h, u_h) = 0$

- dim V_h , dim $Q_h < \infty$
- Discretization error between (q, u) and (q_h, u_h)
- Numerical effort depends on dim V_h and dim Q_h

Optimization problem (infinite dimensional)

Minimize
$$J(q, u)$$
, $q \in Q_{ad}$, $u \in V_{ad}$

subject to

$$A(q,u)=0$$

Discretized optimization problem

Minimize $J(q_h, u_h)$, $q_h \in Q_h \cap Q_{ad}$, $u_h \in V_h \cap V_{ad}$

$$A_h(q_h, u_h) = 0$$

- dim V_h , dim $Q_h < \infty$
- Discretization error between (q, u) and (q_h, u_h)
- Numerical effort depends on dim V_h and dim Q_h

Optimization problem (infinite dimensional)

Minimize
$$J(q, u)$$
, $q \in Q_{ad}$, $u \in V_{ad}$

subject to

$$A(q, u) = 0$$

Discretized optimization problem

Minimize $J(q_h, u_h)$, $q_h \in Q_h \cap Q_{ad}$, $u_h \in V_h \cap V_{ad}$

$$A_h(q_h, u_h) = 0$$

- dim V_h , dim $Q_h < \infty$
- Discretization error between (q, u) and (q_h, u_h)
- Numerical effort depends on dim V_h and dim Q_h

- "Discretization error" \leq tolerance
- Numerical effort \rightarrow min!

- What kind of error is important?
- \rightarrow Quantity of interest: I(q, u)
- How to measure/estimate this error?
- ightarrow A posteriori error estimation: $-l(q,u)-l(q_h,u_h)pprox\eta_h$
- How to construct an appropriate discretization?
- ightarrow Adaptive choice of discretizations: ightarrow locally refined meshes

- "Discretization error" \leq tolerance
- Numerical effort \rightarrow min!

- What kind of error is important?
- \rightarrow Quantity of interest: I(q, u)
- How to measure/estimate this error?
- ightarrow A posteriori error estimation: $I(q,u) I(q_h,u_h) pprox \eta_h$
- How to construct an appropriate discretization?
- ightarrow Adaptive choice of discretizations: ightarrow locally refined meshes

- "Discretization error" \leq tolerance
- Numerical effort \rightarrow min!

- What kind of error is important?
- \rightarrow Quantity of interest: I(q, u)
- How to measure/estimate this error?
- ightarrow A posteriori error estimation: $I(q,u) I(q_h,u_h) pprox \eta_h$
- How to construct an appropriate discretization?
- ightarrow Adaptive choice of discretizations: ightarrow locally refined meshes

- "Discretization error" \leq tolerance
- Numerical effort \rightarrow min!

- What kind of error is important?
- \rightarrow Quantity of interest: I(q, u)
- How to measure/estimate this error?
- ightarrow A posteriori error estimation: $I(q,u) I(q_h,u_h) pprox \eta_h$
- How to construct an appropriate discretization?
- ightarrow Adaptive choice of discretizations: ightarrow locally refined meshes

- "Discretization error" \leq tolerance
- Numerical effort \rightarrow min!
- \rightarrow Questions:
 - What kind of error is important?
 - \rightarrow Quantity of interest: I(q, u)
 - How to measure/estimate this error?
 - ightarrow A posteriori error estimation: $I(q, u) I(q_h, u_h) pprox \eta_h$
 - How to construct an appropriate discretization?
 - ightarrow Adaptive choice of discretizations: ightarrow locally refined meshes

- "Discretization error" \leq tolerance
- Numerical effort \rightarrow min!
- \rightarrow Questions:
 - What kind of error is important?
 - \rightarrow Quantity of interest: l(q, u)
 - How to measure/estimate this error?
 - ightarrow A posteriori error estimation: $I(q, u) I(q_h, u_h) pprox \eta_h$
 - How to construct an appropriate discretization?
 - ightarrow Adaptive choice of discretizations: ightarrow locally refined meshes

- "Discretization error" \leq tolerance
- Numerical effort \rightarrow min!
- \rightarrow Questions:
 - What kind of error is important?
 - \rightarrow Quantity of interest: l(q, u)
 - How to measure/estimate this error?
 - \rightarrow A posteriori error estimation: $l(q, u) l(q_h, u_h) \approx \eta_h$
 - How to construct an appropriate discretization?
 - ightarrow Adaptive choice of discretizations: Iocally refined meshes

- "Discretization error" \leq tolerance
- Numerical effort \rightarrow min!
- \rightarrow Questions:
 - What kind of error is important?
 - \rightarrow Quantity of interest: l(q, u)
 - How to measure/estimate this error?
 - \rightarrow A posteriori error estimation: $l(q, u) l(q_h, u_h) \approx \eta_h$
 - How to construct an appropriate discretization?
 - $\rightarrow\,$ Adaptive choice of discretizations: $\,$ locally refined meshes

- Becker, Kapp, Rannacher
- Liu et al.
- Hoppe, Kieweg, Hintermüller
- Vexler, Benedix, Wollner
- Günther, Hinze, Schiela
- Meidner, Vexler
- . . .

2 Examples

- 3 Adaptive algorithm
- Optimization problems governed by parabolic equations
- 5 Space-time finite element discretization
- 6 A posteriori error estimation
- 7 Numerical example

Flow around a cylinder

Optimization problem

Minimize
$$J(u) = c_0 \int_{\Gamma_0} n \cdot \sigma(u) \cdot d \, ds$$
, $\sigma(u) = \frac{\nu}{2} (\nabla v + \nabla v^T) - pI$, $u = (v, p)$

$$-\nu\Delta v + v\cdot\nabla v + \nabla p = 0, \quad \nabla \cdot v = 0 \text{ in } \Omega$$

 $v = v_{\text{in}} \text{ on } \Gamma_{\text{in}}, v = 0 \text{ on } \Gamma_{\text{wall}}, v \partial_n v - p \cdot n = 0 \text{ on } \Gamma_{\text{out}}$ $v \cdot n = 0 \text{ on } \Gamma_0, v \cdot \tau = q \text{ on } \Gamma_0$

Flow around a cylinder

Optimization problem

Minimize
$$J(u) = c_0 \int_{\Gamma_0} n \cdot \sigma(u) \cdot d \, ds$$
, $\sigma(u) = \frac{\nu}{2} (\nabla v + \nabla v^T) - pI$, $u = (v, p)$

$$-\nu\Delta v + v\cdot\nabla v + \nabla p = 0, \quad \nabla \cdot v = 0 \text{ in } \Omega$$

 $v = v_{\text{in}} \text{ on } \Gamma_{\text{in}}, v = 0 \text{ on } \Gamma_{\text{wall}}, v \partial_n v - p \cdot n = 0 \text{ on } \Gamma_{\text{out}}$ $v \cdot n = 0 \text{ on } \Gamma_0, v \cdot \tau = q \text{ on } \Gamma_0$

Flow around a cylinder

Optimization problem

Minimize
$$J(u) = c_0 \int_{\Gamma_0} n \cdot \sigma(u) \cdot d \, ds$$
, $\sigma(u) = \frac{\nu}{2} (\nabla v + \nabla v^T) - pI$, $u = (v, p)$

$$-\nu\Delta v + v\cdot\nabla v + \nabla p = 0, \quad \nabla \cdot v = 0 \text{ in } \Omega$$

$$v = v_{\text{in}} \text{ on } \Gamma_{\text{in}}, \quad v = 0 \text{ on } \Gamma_{\text{wall}}, \quad v \partial_n v - p \cdot n = 0 \text{ on } \Gamma_{\text{out}}$$
$$v \cdot n = 0 \text{ on } \Gamma_{\text{O}}, \quad v \cdot \tau = q \text{ on } \Gamma_{\text{O}}$$

controlled flow, $J(u) \approx 5.04$

- Quantity of interest I(q, u) = J(u) (QI = Cost functional)
- Discretization of the state variable u = (v, p) in space
- Error estimation $J(u) J(u_h)$

Example 2: Parameter Identification

Mathematical model

$$\partial_t \theta - \Delta \theta = \omega$$
 in (0, T) $\times \Omega$

$$\partial_t y - \frac{1}{L} \Delta y = -\omega \quad \text{in } (0, T) \times \Omega$$

$$\omega = rac{eta^2}{2\gamma} y \exp\left(rac{eta(heta-1)}{1+lpha(heta-1)}
ight)$$

+ Initial and bounday conditions

• The state $u = (\theta, y)$ consists of temperature and concentration of the fuel

I he parameter $q = \alpha$ has to be estimated

State equation A(q, u) = 0

Example 2: Parameter Identification

Mathematical model

$$\partial_t \theta - \Delta \theta = \omega$$
 in (0, T) $\times \Omega$

$$\partial_t y - \frac{1}{L} \Delta y = -\omega \quad \text{in } (0, T) \times \Omega$$

$$\omega = rac{eta^2}{2\gamma} y \exp\left(rac{eta(heta-1)}{1+oldsymbol{lpha}(heta-1)}
ight)$$

+ Initial and bounday conditions

• The state $u = (\theta, y)$ consists of temperature and concentration of the fuel

• The parameter $q = \alpha$ has to be estimated

Example 2: Parameter Identification

Mathematical model

$$\partial_t \theta - \Delta \theta = \omega$$
 in (0, T) $\times \Omega$

$$\partial_t y - \frac{1}{L} \Delta y = -\omega \quad \text{in } (0, T) \times \Omega$$

$$\omega = rac{eta^2}{2\gamma} y \exp\left(rac{eta(heta-1)}{1+oldsymbol{lpha}(heta-1)}
ight)$$

+ Initial and bounday conditions

• The state $u = (\theta, y)$ consists of temperature and concentration of the fuel

• The parameter $q = \alpha$ has to be estimated

State equationA(q, u) = 0

• Comparison of an experiment and the simulation

• Observation \overline{C} vs. C(u)

Optimization problem

Minimize
$$J(q, u) = \frac{1}{2} \|C(u) - \overline{C}\|_Z^2, \quad q \in Q, \ u \in V$$

$$A(q, u) = 0$$

- Quantity of interest: $I(q, u) = \alpha$
- Discretization of the state variable in space and time

- Comparison of an experiment and the simulation
- Observation \overline{C} vs. C(u)

Minimize
$$J(q, u) = \frac{1}{2} \|C(u) - \overline{C}\|_Z^2, \quad q \in Q, \ u \in V$$

$$A(q, u) = 0$$

- Quantity of interest: $I(q, u) = \alpha$
- Discretization of the state variable in space and time

- Comparison of an experiment and the simulation
- Observation \overline{C} vs. C(u)

Minimize
$$J(q, u) = \frac{1}{2} ||C(u) - \overline{C}||_Z^2$$
, $q \in Q$, $u \in V$

$$A(q, u) = 0$$

- Quantity of interest: $I(q, u) = \alpha$
- Discretization of the state variable in space and time

- Comparison of an experiment and the simulation
- Observation \overline{C} vs. C(u)

Minimize
$$J(q, u) = \frac{1}{2} ||C(u) - \overline{C}||_Z^2$$
, $q \in Q$, $u \in V$

$$A(q, u) = 0$$

- Quantity of interest: $I(q, u) = \alpha$
- Discretization of the state variable in space and time

- Comparison of an experiment and the simulation
- Observation \overline{C} vs. C(u)

Minimize
$$J(q, u) = \frac{1}{2} ||C(u) - \overline{C}||_Z^2$$
, $q \in Q$, $u \in V$

$$A(q, u) = 0$$

- Quantity of interest: $I(q, u) = \alpha$
- Discretization of the state variable in space and time

Mathematical model

$\partial_t \theta - k \Delta \theta$	=	$\frac{1}{3\kappa}\Delta\rho$	in (0, T) × Ω
$-\frac{\varepsilon^2}{3\kappa}\Delta ho+\kappa ho$	=	$4\kappa\pi$ a $ heta^4$	in (0, T) $ imes$ Ω
$\frac{1}{\varepsilon k}\theta + n \cdot \nabla \theta$	=	$\frac{1}{\varepsilon k}q$	auf (0, T) $ imes \partial \Omega$
$\frac{3\kappa}{2\varepsilon}\rho + n\cdot\nabla\rho$	=	$\frac{3\kappa}{2\varepsilon}4\pi aq^4$	auf (0, T) $ imes$ $\partial \Omega$

- The state $u = (\theta, \rho)$ consist of the temperature and the radiation transfer
- Die control q is the ambient temperature

State equation A(q, u) = 0

Minimize
$$J(q, u) = \int_0^T \int_\Omega (\theta - \theta_d)^2 dx dt + \frac{\alpha}{2} \int_0^T q^2 dt$$
, $q \in Q_{ad}$, $u \in V_{ad}$

subject to

$$A(q, u) = 0$$

• Control constraints

$$q \in Q_{ad} = \{ q \in L^2(0, T) \mid q_a \le q(t) \le q_b \text{ a.e. in } (0, T) \}$$

• State constraints

 $\theta_a \leq \theta(t, x) \leq \theta_b$ and/or $|\nabla \theta(t, x)| \leq c_b$

- Discretization of the state variable in space and time
- Discretization of the control variable in time

Minimize
$$J(q, u) = \int_0^T \int_\Omega (\theta - \theta_d)^2 dx dt + \frac{\alpha}{2} \int_0^T q^2 dt$$
, $q \in Q_{ad}$, $u \in V_{ad}$

subject to

$$A(q, u) = 0$$

Control constraints

$$q \in Q_{ad} = \{ q \in L^2(0, T) \mid q_a \le q(t) \le q_b \text{ a.e. in } (0, T) \}$$

• State constraints

 $\theta_a \leq \theta(t, x) \leq \theta_b$ and/or $|\nabla \theta(t, x)| \leq c_b$

- Discretization of the state variable in space and time
- Discretization of the control variable in time

Minimize
$$J(q, u) = \int_0^T \int_\Omega (\theta - \theta_d)^2 dx dt + \frac{\alpha}{2} \int_0^T q^2 dt$$
, $q \in Q_{ad}$, $u \in V_{ad}$

subject to

$$A(q, u) = 0$$

• Control constraints

$$q \in Q_{ad} = \{ q \in L^2(0, T) \mid q_a \le q(t) \le q_b \text{ a.e. in } (0, T) \}$$

State constraints

 $\theta_a \leq \theta(t, x) \leq \theta_b$ and/or $|\nabla \theta(t, x)| \leq c_b$

- Discretization of the state variable in space and time
- Discretization of the control variable in time

Minimize
$$J(q, u) = \int_0^T \int_\Omega (\theta - \theta_d)^2 dx dt + \frac{\alpha}{2} \int_0^T q^2 dt, \quad q \in Q_{ad}, u \in V_{ad}$$

subject to

$$A(q, u) = 0$$

• Control constraints

$$q \in Q_{ad} = \{ q \in L^2(0, T) \mid q_a \le q(t) \le q_b \text{ a.e. in } (0, T) \}$$

State constraints

 $\theta_a \leq \theta(t, x) \leq \theta_b$ and/or $|\nabla \theta(t, x)| \leq c_b$

Discretization of the state variable in space and time
 Discretization of the control variable in time

Minimize
$$J(q, u) = \int_0^T \int_\Omega (\theta - \theta_d)^2 dx dt + \frac{\alpha}{2} \int_0^T q^2 dt, \quad q \in Q_{ad}, u \in V_{ad}$$

subject to

$$A(q, u) = 0$$

• Control constraints

$$q \in Q_{ad} = \{ q \in L^2(0, T) \mid q_a \le q(t) \le q_b \text{ a.e. in } (0, T) \}$$

State constraints

 $\theta_a \leq \theta(t, x) \leq \theta_b$ and/or $|\nabla \theta(t, x)| \leq c_b$

- Discretization of the state variable in space and time
- Discretization of the control variable in time

Boris Vexler

2 Examples

3 Adaptive algorithm

- Optimization problems governed by parabolic equations
- 5 Space-time finite element discretization
- 6 A posteriori error estimation
- 7 Numerical example

- Temporal discretization
 - $\rightarrow~$ Choice of the time steps
- Spatial discretization
 - ightarrow Choice of spatial meshes for each time step
- Control discretization
 - ightarrow Choice of the discretization of the control space

Goal: Error estimators

$$I(q, u) - I(q_{\sigma}, u_{\sigma}) \approx \eta_k + \eta_h + \eta_I$$

- Temporal discretization
 - $\rightarrow~$ Choice of the time steps
- Spatial discretization
 - $\rightarrow~$ Choice of spatial meshes for each time step
- Control discretization
 - ightarrow Choice of the discretization of the control space

Goal: Error estimators

 $I(q, u) - I(q_{\sigma}, u_{\sigma}) \approx \eta_k + \eta_h + \eta_I$

- Temporal discretization
 - $\rightarrow~$ Choice of the time steps
- Spatial discretization
 - $\rightarrow~$ Choice of spatial meshes for each time step
- Control discretization
 - $\rightarrow\,$ Choice of the discretization of the control space

Goal: Error estimators $l(q, u) - l(q_{\sigma}, u_{\sigma}) \approx \eta_k + \eta_h + \eta_l$

- Temporal discretization
 - $\rightarrow~$ Choice of the time steps
- Spatial discretization
 - $\rightarrow~$ Choice of spatial meshes for each time step
- Control discretization
 - $\rightarrow\,$ Choice of the discretization of the control space

Goal: Error estimators

$$I(q, u) - I(q_{\sigma}, u_{\sigma}) \approx \eta_k + \eta_h + \eta_I$$

- Subscripts Choose an initial discretization \mathcal{T}_{σ_0} , set n = 0
- **2** Compute (q_{σ}, u_{σ})
- 3 Evaluate η_{k_n} , η_{h_n} , η_{l_n}
- if $\eta_{k_n} + \eta_{h_n} + \eta_{l_n} \leq TOL$ break;
- else
 - $\eta_k \gg \eta_h$, $\eta_k \gg \eta_l \Rightarrow$ Refine time discr.
 - $\eta_k \approx \eta_h \gg \eta_I \Rightarrow$ Refine time & space discr.
 - $\eta_k \approx \eta_h \approx \eta_l \Rightarrow$ Refine time, space & control discr.
 - . . .
- **o** n = n + 1, go to 2
- ightarrow Refinement is based on local information from η_k , η_h , η_l

- Subscripts Choose an initial discretization \mathcal{T}_{σ_0} , set n = 0
- **2** Compute (q_{σ}, u_{σ})
- 3 Evaluate η_{k_n} , η_{h_n} , η_{l_n}
- if $\eta_{k_n} + \eta_{h_n} + \eta_{l_n} \leq TOL$ break;
- else
 - $\eta_k \gg \eta_h$, $\eta_k \gg \eta_l \Rightarrow$ Refine time discr.
 - $\eta_k \approx \eta_h \gg \eta_I \Rightarrow$ Refine time & space discr.
 - $\eta_k \approx \eta_h \approx \eta_l \Rightarrow$ Refine time, space & control discr.
 - . . .
- **o** n = n + 1, go to 2
- \rightarrow Refinement is based on local information from η_k , η_h , η_l

2 Examples

- 3 Adaptive algorithm
- Optimization problems governed by parabolic equations
 - 5 Space-time finite element discretization
- 6 A posteriori error estimation
- 7 Numerical example

$$\rightarrow$$
 State equation: $u_t + A(q, u) = f$, $u(0) = u_0$

Weak formulation

$$u \in X = W(0, T; V, V^*)$$
 : $a(q, u)(\phi) = f(\phi) \quad \forall \phi \in X$

with

$$a(q, u)(\phi) = \int_{0}^{T} \left(\langle \partial_{t} u(t), \phi(t) \rangle_{V^{*}, V} + a_{s}(q, u(t))(\phi(t)) \right) dt + (u(0) - u_{0}, \phi(0))$$

Optimization problem

$$\rightarrow$$
 State equation: $u_t + A(q, u) = f$, $u(0) = u_0$

Weak formulation

$$u \in X = W(0, T; V, V^*) : a(q, u)(\phi) = f(\phi) \quad \forall \phi \in X$$

with

$$a(q, u)(\phi) = \int_{0}^{T} \left(\langle \partial_{t} u(t), \phi(t) \rangle_{V^{*}, V} + a_{s}(q, u(t))(\phi(t)) \right) dt + (u(0) - u_{0}, \phi(0))$$

Optimization problem

$$\begin{array}{ll} \text{Minimize } J(q, u), \quad q \in Q_{\text{ad}}, \ u \in X\\ \text{s.t.} \quad a(q, u)(\phi) = f(\phi) \quad \forall \phi \in X \end{array}$$

$$\rightarrow$$
 State equation: $u_t + A(q, u) = f$, $u(0) = u_0$

Weak formulation

$$u \in X = W(0, T; V, V^*) : a(q, u)(\phi) = f(\phi) \quad \forall \phi \in X$$

with

$$a(q, u)(\phi) = \int_{0}^{T} \left(\langle \partial_{t} u(t), \phi(t) \rangle_{V^{*}, V} + a_{s}(q, u(t))(\phi(t)) \right) dt + (u(0) - u_{0}, \phi(0))$$

Optimization problem

$$\mathcal{L}(q, u, z) = J(q, u) + f(z) - a(q, u)(z)$$

• Necessary optimality conditions:

 $\mathcal{L}'(q, u, z)(\delta q, \delta u, \delta z) = 0 \quad \forall \delta q \in Q, \ \forall \delta u, \delta z \in X$

Optimality system

 $\begin{aligned} a(q, u)(v) &= f(v) & \forall v \in X \quad (\text{state equation}) \\ a'_u(q, u)(v, z) &= J'_u(q, u)(v) & \forall v \in X \quad (\text{adjoint equation}) \\ a'_a(q, u)(\delta q, z) &= J'_a(q, u)(\delta q) & \forall \delta q \in Q \quad (\text{gradient equation}) \end{aligned}$

 $o = J_q'(q,u)(\delta q - q) - a_q'(q,u)(\delta q - q,z) \geq 0 \quad orall \delta q \in Q_{
m ad}$

$$\mathcal{L}(q, u, z) = J(q, u) + f(z) - a(q, u)(z)$$

• Necessary optimality conditions:

$$\mathcal{L}'(q, u, z)(\delta q, \delta u, \delta z) = 0 \quad \forall \delta q \in Q, \ \forall \delta u, \delta z \in X$$

Optimality system

 $\begin{aligned} a(q, u)(v) &= f(v) \\ a'_u(q, u)(v, z) &= J'_u(q, u)(v) \\ a'_q(q, u)(\delta q, z) &= J'_q(q, u)(\delta q) \end{aligned} \quad \forall$

 $v \in X$ (state equation) $v \in X$ (adjoint equation) $q \in Q$ (gradient equation)

 $o = J_{q}'(q,u)(\delta q-q) - a_{q}'(q,u)(\delta q-q,z) \geq 0 \quad orall \delta q \in Q_{
m ad}$

$$\mathcal{L}(q, u, z) = J(q, u) + f(z) - a(q, u)(z)$$

• Necessary optimality conditions:

$$\mathcal{L}'(q, u, z)(\delta q, \delta u, \delta z) = 0 \quad \forall \delta q \in Q, \ \forall \delta u, \delta z \in X$$

Optimality system

 $\begin{aligned} &a(q, u)(v) = f(v) & \forall v \in X \quad (\text{state equation}) \\ &a'_u(q, u)(v, z) = J'_u(q, u)(v) & \forall v \in X \quad (\text{adjoint equation}) \\ &a'_q(q, u)(\delta q, z) = J'_q(q, u)(\delta q) & \forall \delta q \in Q \quad (\text{gradient equation}) \end{aligned}$

 $o \quad J_q'(q,u)(\delta q-q)-a_q'(q,u)(\delta q-q,z)\geq 0 \quad orall \delta q\in Q_{\mathsf{ad}}$

$$\mathcal{L}(q, u, z) = J(q, u) + f(z) - a(q, u)(z)$$

• Necessary optimality conditions:

$$\mathcal{L}'(q, u, z)(\delta q, \delta u, \delta z) = 0 \quad \forall \delta q \in Q, \ \forall \delta u, \delta z \in X$$

Optimality system

 $\begin{aligned} &a(q, u)(v) = f(v) & \forall v \in X \quad (\text{state equation}) \\ &a'_u(q, u)(v, z) = J'_u(q, u)(v) & \forall v \in X \quad (\text{adjoint equation}) \\ &a'_q(q, u)(\delta q, z) = J'_q(q, u)(\delta q) & \forall \delta q \in Q \quad (\text{gradient equation}) \end{aligned}$

 $ightarrow J_q'(q,u)(\delta q-q) - a_q'(q,u)(\delta q-q,z) \geq 0 \quad \forall \delta q \in Q_{\mathrm{ad}}$

Motivation

2 Examples

- 3 Adaptive algorithm
- Optimization problems governed by parabolic equations
- 5 Space-time finite element discretization
- 6 A posteriori error estimation

7 Numerical example

Optimize-then-Discretize versus Discretize-then-Optimize

- \rightarrow Optimize-then-Discretize
 - Build up the optimality system on the continuous level
 - Discretize the state, the adjoint and the gradient equations
 - $\rightarrow\,$ Appropriate and stable discretizations of all involved equations
- \rightarrow Discretize-then-Optimize
 - Discretize the state equation
 - Build up the optimality system for the discrete optimization problem
 - \rightarrow Preserving problem structure (symmetry of the optimality system)

 \longrightarrow For a pure Galerkin discretization:

Optimize-then-Discretize = Discretize-then-Optimize

 \rightarrow Exact discrete derivatives

- Use finite elements for spatial and temporal discretization
 - \rightarrow Optimize-then-Discretize = Discretize-then-Optimize
 - $\rightarrow\,$ Systematic a priori error analysis
 - $\rightarrow\,$ Systematic a posteriori error estimation
 - \rightarrow Dynamic meshes
- Temporal discretization: Discontinuous Galerkin methods
 - Time partitioning: $\overline{l} = \{0\} \cup l_1 \cup l_2 \ldots \cup l_M$ with

 $I_m = (t_{m-1}, t_m]$ and $0 = t_0 < t_1 < \ldots < t_{M-1} < t_M = T$

• Semidiscretized state space

$$X_k^r = \{v_k \in L^2(I, V) \mid v_k |_{I_m} \in P_r(I_m, V) \text{ and } v_k(0) \in H\}$$

- Use finite elements for spatial and temporal discretization
 - \rightarrow Optimize-then-Discretize = Discretize-then-Optimize
 - $\rightarrow\,$ Systematic a priori error analysis
 - $\rightarrow\,$ Systematic a posteriori error estimation
 - \rightarrow Dynamic meshes
- Temporal discretization: Discontinuous Galerkin methods
 - Time partitioning: $\overline{I} = \{0\} \cup I_1 \cup I_2 \ldots \cup I_M$ with

$$I_m = (t_{m-1}, t_m]$$
 and $0 = t_0 < t_1 < \ldots < t_{M-1} < t_M = T$

• Semidiscretized state space

$$X_k^r = \{v_k \in L^2(I, V) \mid v_k |_{I_m} \in P_r(I_m, V) \text{ and } v_k(0) \in H\}$$

Semi-discretization in time

$$u_k \in X_k^r$$
 : $a_k(q_k, u_k)(\phi_k) = f(\phi_k) \quad \forall \phi_k \in X_k^r$

with

$$a_k(q_k, u_k)(\phi_k) := a(q_k, u_k)(\phi) + \sum_{m=1}^{M-1} ([u_k]_m, \phi_m^+)$$

Spatial discretization

$$u_{kh} \in X_{kh}^{r,s}$$
 : $a_k(q_{kh}, u_{kh})(\phi_{kh}) = f(\phi_{kh}) \quad \forall \phi_{kh} \in X_{kh}^{r,s}$

with the discrete state space:

$$X_{kh}^{r,s} = \{v_{kh} \in X_k^r : v_{kh}|_{I_m} \in P_r(I_m, V_{h,m}^s) \text{ and } v_k(0) \in V_{h,0}^s\}$$

Semi-discretization in time

$$u_k \in X_k^r$$
 : $a_k(q_k, u_k)(\phi_k) = f(\phi_k) \quad \forall \phi_k \in X_k^r$

with

$$a_k(q_k, u_k)(\phi_k) := a(q_k, u_k)(\phi) + \sum_{m=1}^{M-1} ([u_k]_m, \phi_m^+)$$

Spatial discretization

$$u_{kh} \in X_{kh}^{r,s}$$
 : $a_k(q_{kh}, u_{kh})(\phi_{kh}) = f(\phi_{kh}) \quad \forall \phi_{kh} \in X_{kh}^{r,s}$

with the discrete state space:

$$X_{kh}^{r,s} = \{v_{kh} \in X_k^r : v_{kh}|_{I_m} \in P_r(I_m, V_{h,m}^s) \text{ and } v_k(0) \in V_{h,0}^s\}$$

$\rightarrow\,$ Reinterpret Galerkin methods as time stepping schemes

- $dG(0) \Longrightarrow$ (variant of) implicit Euler scheme
- dG(r) \implies A-stable scheme of order r + 1

Discrete optimization problem

Minimize
$$J(q_{\sigma}, u_{\sigma}), \quad q_{\sigma} \in Q_l, u_{\sigma} \in X_{kh}^{r,s}$$

subject to

$$a_k(q_\sigma, u_\sigma)(\phi_{kh}) = f(\phi_{kh}) \quad \forall \phi_{kh} \in X_{kh}^{r,s}$$

Motivation

2 Examples

- 3 Adaptive algorithm
- Optimization problems governed by parabolic equations
- 5 Space-time finite element discretization
- 6 A posteriori error estimation
 - Numerical example

 \rightarrow Goal: $I(q, u) - I(q_{\sigma}, u_{\sigma}) \approx \eta_k + \eta_h + \eta_I$

ightarrow Lagrange functional: $\mathcal{L}(q, u, z) = J(q, u) + f(z) - a_k(q, u)(z)$

	$Q \times X \times X$	$\mathcal{L}'(\xi)(\delta\xi)$	
	$Q \times X_k \times X_k$	$\mathcal{L}'(\xi_k)(\delta\xi_k)$	
	$Q imes X_{kh} imes X_{kh}$	$\mathcal{L}'(\xi_{kh})(\delta\xi_{kh})$	
	$Q_l imes X_{kh} imes X_{kh}$	$\mathcal{L}'(\xi_{\sigma})(\delta\xi_{\sigma})$	

Error spliting

$$l(q, u) - l(q_{\sigma}, u_{\sigma}) = l(q, u) - l(q_{k}, u_{k}) + l(q_{k}, u_{k}) - l(q_{kh}, u_{kh}) + l(q_{kh}, u_{kh}) - l(q_{\sigma}, u_{\sigma})$$

$$\rightarrow$$
 Goal: $I(q, u) - I(q_{\sigma}, u_{\sigma}) \approx \eta_k + \eta_h + \eta_l$

 \rightarrow Lagrange functional: $\mathcal{L}(q, u, z) = J(q, u) + f(z) - a_k(q, u)(z)$

$\xi = (q, u, z)$	\in	$Q \times X \times X$	$\mathcal{L}'(\xi)(\delta\xi)$	= 0
$\xi_k = (q_k, u_k, z_k)$	\in	$Q imes X_k imes X_k$	$\mathcal{L}'(\xi_k)(\delta\xi_k)$	= 0
$\xi_{kh} = (q_{kh}, u_{kh}, z_{kh})$	\in	$Q imes X_{kh} imes X_{kh}$	$\mathcal{L}'(\xi_{kh})(\delta\xi_{kh})$	= 0
$\xi_{\sigma}=\left(q_{\sigma} ext{,} u_{\sigma} ext{,} z_{\sigma} ight)$	\in	$Q_l imes X_{kh} imes X_{kh}$	$\mathcal{L}'(\xi_\sigma)(\delta\xi_\sigma)$	= 0

Error spliting

$$l(q, u) - l(q_{\sigma}, u_{\sigma}) = l(q, u) - l(q_{k}, u_{k}) + l(q_{k}, u_{k}) - l(q_{kh}, u_{kh}) + l(q_{k}, u_{k}) - l(q_{kh}, u_{kh})$$

$$\rightarrow$$
 Goal: $I(q, u) - I(q_{\sigma}, u_{\sigma}) \approx \eta_k + \eta_h + \eta_I$

 \rightarrow Lagrange functional: $\mathcal{L}(q, u, z) = J(q, u) + f(z) - a_k(q, u)(z)$

$\xi = (q, u, z)$	\in	$Q \times X \times X$	$\mathcal{L}'(\xi)(\delta\xi)$	= 0
$\xi_k = (q_k, u_k, z_k)$	\in	$Q imes X_k imes X_k$	$\mathcal{L}'(\xi_k)(\delta\xi_k)$	= 0
$\xi_{kh} = (q_{kh}, u_{kh}, z_{kh})$	\in	$Q imes X_{kh} imes X_{kh}$	$\mathcal{L}'(\xi_{kh})(\delta\xi_{kh})$	= 0
$\xi_{\sigma} = (q_{\sigma}, u_{\sigma}, z_{\sigma})$	\in	$Q_l imes X_{kh} imes X_{kh}$	$\mathcal{L}'(\xi_\sigma)(\delta\xi_\sigma)$	= 0

Error spliting

$$I(q, u) - I(q_{\sigma}, u_{\sigma}) = I(q, u) - I(q_{k}, u_{k}) + I(q_{k}, u_{k}) - I(q_{kh}, u_{kh}) + I(q_{kh}, u_{kh}) - I(q_{\sigma}, u_{\sigma})$$

$$\rightarrow$$
 Goal: $I(q, u) - I(q_{\sigma}, u_{\sigma}) \approx \eta_k + \eta_h + \eta_l$

$$J(q, u) - J(q_k, u_k) = \frac{1}{2}\rho_u(x_{\sigma})(u - \tilde{u}_k) + \frac{1}{2}\rho_z(x_{\sigma})(z - \tilde{z}_k) + R_k$$

$$J(q_k, u_k) - J(q_{kh}, u_{kh}) = \frac{1}{2}\rho_u(x_{\sigma})(u_k - \tilde{u}_{kh}) + \frac{1}{2}\rho_z(x_{\sigma})(z_k - \tilde{z}_{kh}) + R_{kh}$$

$$J(q_{kh}, u_{kh}) - J(q_{\sigma}, u_{\sigma}) = \frac{1}{2}\rho_q(x_{\sigma})(q_{kh} - \tilde{q}_{\sigma}) + R_{\sigma}$$

• Residuals:

$$\begin{aligned} \rho_u(x_{\sigma})(\phi) &= J'_u(q_{\sigma}, u_{\sigma})(\phi) - a'_{k,u}(q_{\sigma}, u_{\sigma})(\phi, z_{\sigma}) \\ \rho_z(x_{\sigma})(\phi) &= f(\phi) - a_k(q_{\sigma}, u_{\sigma})(\phi) \\ \rho_q(x_{\sigma})(\phi) &= J'_q(q_{\sigma}, u_{\sigma})(\phi) - a'_{k,q}(q_{\sigma}, u_{\sigma})(\phi, z_{\sigma}) \end{aligned}$$

$$\rightarrow$$
 Goal: $I(q, u) - I(q_{\sigma}, u_{\sigma}) \approx \eta_k + \eta_h + \eta_l$

$$J(q, u) - J(q_k, u_k) = \frac{1}{2} \rho_u(x_\sigma)(u - \tilde{u}_k) + \frac{1}{2} \rho_z(x_\sigma)(z - \tilde{z}_k) + R_k$$

$$J(q_k, u_k) - J(q_{kh}, u_{kh}) = \frac{1}{2} \rho_u(x_\sigma)(u_k - \tilde{u}_{kh}) + \frac{1}{2} \rho_z(x_\sigma)(z_k - \tilde{z}_{kh}) + R_{kh}$$

$$J(q_{kh}, u_{kh}) - J(q_\sigma, u_\sigma) = \frac{1}{2} \rho_q(x_\sigma)(q_{kh} - \tilde{q}_\sigma) + R_\sigma$$

• Residuals:

$$\begin{aligned} \rho_u(x_{\sigma})(\phi) &= J'_u(q_{\sigma}, u_{\sigma})(\phi) - a'_{k,u}(q_{\sigma}, u_{\sigma})(\phi, z_{\sigma}) \\ \rho_z(x_{\sigma})(\phi) &= f(\phi) - a_k(q_{\sigma}, u_{\sigma})(\phi) \\ \rho_q(x_{\sigma})(\phi) &= J'_q(q_{\sigma}, u_{\sigma})(\phi) - a'_{k,q}(q_{\sigma}, u_{\sigma})(\phi, z_{\sigma}) \end{aligned}$$

$$\rightarrow$$
 Goal: $I(q, u) - I(q_{\sigma}, u_{\sigma}) \approx \eta_k + \eta_h + \eta_l$

$$J(q, u) - J(q_k, u_k) = \frac{1}{2} \rho_u(x_\sigma)(u - \tilde{u}_k) + \frac{1}{2} \rho_z(x_\sigma)(z - \tilde{z}_k) + R_k$$

$$J(q_k, u_k) - J(q_{kh}, u_{kh}) = \frac{1}{2} \rho_u(x_\sigma)(u_k - \tilde{u}_{kh}) + \frac{1}{2} \rho_z(x_\sigma)(z_k - \tilde{z}_{kh}) + R_{kh}$$

$$J(q_{kh}, u_{kh}) - J(q_\sigma, u_\sigma) = \frac{1}{2} \rho_q(x_\sigma)(q_{kh} - \tilde{q}_\sigma) + R_\sigma$$

• Residuals:

$$\begin{aligned} \rho_u(x_{\sigma})(\phi) &= J'_u(q_{\sigma}, u_{\sigma})(\phi) - a'_{k,u}(q_{\sigma}, u_{\sigma})(\phi, z_{\sigma}) \\ \rho_z(x_{\sigma})(\phi) &= f(\phi) - a_k(q_{\sigma}, u_{\sigma})(\phi) \\ \rho_q(x_{\sigma})(\phi) &= J'_q(q_{\sigma}, u_{\sigma})(\phi) - a'_{k,q}(q_{\sigma}, u_{\sigma})(\phi, z_{\sigma}) \end{aligned}$$

$$ightarrow$$
 Goal: $I(q, u) - I(q_{\sigma}, u_{\sigma}) pprox \eta_k + \eta_h + \eta_l$

$$J(q, u) - J(q_k, u_k) = \frac{1}{2} \rho_u(x_{\sigma})(u - \tilde{u}_k) + \frac{1}{2} \rho_z(x_{\sigma})(z - \tilde{z}_k) + R_k$$

$$J(q_k, u_k) - J(q_{kh}, u_{kh}) = \frac{1}{2} \rho_u(x_{\sigma})(u_k - \tilde{u}_{kh}) + \frac{1}{2} \rho_z(x_{\sigma})(z_k - \tilde{z}_{kh}) + R_{kh}$$

$$J(q_{kh}, u_{kh}) - J(q_{\sigma}, u_{\sigma}) = \frac{1}{2} \rho_q(x_{\sigma})(q_{kh} - \tilde{q}_{\sigma}) + R_{\sigma}$$

• Residuals:

$$\begin{aligned} \rho_u(x_{\sigma})(\phi) &= J'_u(q_{\sigma}, u_{\sigma})(\phi) - a'_{k,u}(q_{\sigma}, u_{\sigma})(\phi, z_{\sigma}) \\ \rho_z(x_{\sigma})(\phi) &= f(\phi) - a_k(q_{\sigma}, u_{\sigma})(\phi) \\ \rho_q(x_{\sigma})(\phi) &= J'_q(q_{\sigma}, u_{\sigma})(\phi) - a'_{k,q}(q_{\sigma}, u_{\sigma})(\phi, z_{\sigma}) \end{aligned}$$

Approximation of weights

Approximation of weights

 $u_k - \tilde{u}_{kh} \approx i_{2h}^{(2)} u_\sigma - u_\sigma$

Approximation of weights

U _k -	- ũ	kh	\approx	i _{2h} (2) u	$\sigma - u$	σ

- Evaluation of residuals
- Approximation of weights
- Error estimation w.r.t a quantity of interest
 - Solution of a linear problem (\sim Newton step)

$$\chi = (p, v, y) : \mathcal{L}''(q, u, z)\chi = -l'_q(q, u) - l'_u(q, u)$$

- Evaluation of residuals
- Approximation of weights

- Error estimation w.r.t the cost functional
 - Evaluation of residuals
 - Approximation of weights
- Error estimation w.r.t a quantity of interest
 - Solution of a linear problem (~ Newton step)

$$\chi = (p, v, y)$$
 : $\mathcal{L}''(q, u, z)\chi = -l'_q(q, u) - l'_u(q, u)$

- Evaluation of residuals
- Approximation of weights

Motivation

2 Examples

- 3 Adaptive algorithm
- Optimization problems governed by parabolic equations
- 5 Space-time finite element discretization
- 6 A posteriori error estimation
- 7 Numerical example

Mathematical model

$$\partial_t \theta - \Delta \theta = \omega$$
 in (0, T) $\times \Omega$

$$\partial_t y - \frac{1}{L} \Delta y = -\omega$$
 in $(0, T) \times \Omega$

$$\omega = rac{eta^2}{2\gamma} y \exp\left(rac{eta(heta-1)}{1+oldsymbollpha(heta-1)}
ight)$$

+ Initial and boundary conditions

Goal:

Estimation of Arrhenius parameters α using measurements $\theta(T, \xi_i)$ and $Y(T, \xi_i)$

ightarrow Quantity of interest: I(lpha)=lpha

Mathematical model

$$\partial_t \theta - \Delta \theta = \omega$$
 in (0, T) $\times \Omega$

$$\partial_t y - \frac{1}{L} \Delta y = -\omega$$
 in (0, T) $\times \Omega$

$$\omega = rac{eta^2}{2\gamma} y \exp\left(rac{eta(heta-1)}{1+lpha(heta-1)}
ight)$$

+ Initial and boundary conditions

Goal:

Estimation of Arrhenius parameters α using measurements $\theta(T, \xi_i)$ and $Y(T, \xi_i)$

ightarrow Quantity of interest: I(lpha)=lpha

Mathematical model

$$\partial_t \theta - \Delta \theta = \omega$$
 in (0, T) $\times \Omega$

$$\partial_t y - \frac{1}{L} \Delta y = -\omega$$
 in (0, T) $\times \Omega$

$$\omega = rac{eta^2}{2\gamma} y \exp\left(rac{eta(heta-1)}{1+oldsymbollpha(heta-1)}
ight)$$

+ Initial and boundary conditions

Goal:

Estimation of Arrhenius parameters α using measurements $\theta(T, \xi_i)$ and $Y(T, \xi_i)$

 \rightarrow Quantity of interest: $I(\alpha) = \alpha$

Simulation:

Optimization (Parameter identification):

Numerical example

М	N _{max}	η_k	$ \eta_h$	$ \eta_k + \eta_h$	$J(u) - J(u_{kh})$	$I_{\rm eff}$
256	985	$-7.8 \cdot 10^{-04}$	4.1 · 10 ⁻⁰⁵	$ -7.4 \cdot 10^{-04}$	$ -1.7 \cdot 10^{-03}$	2.29
396	985	$-7.4 \cdot 10^{-04}$	$2.0 \cdot 10^{-04}$	$-5.4 \cdot 10^{-04}$	$-1.4 \cdot 10^{-03}$	2.63
616	1427	$-2.5 \cdot 10^{-04}$	$-3.3 \cdot 10^{-04}$	$-5.8 \cdot 10^{-04}$	$-8.7 \cdot 10^{-04}$	1.51
872	2309	$-1.0 \cdot 10^{-04}$	$-1.4 \cdot 10^{-04}$	$-2.4 \cdot 10^{-04}$	$-4.0 \cdot 10^{-04}$	1.64
1370	3927	$-5.0 \cdot 10^{-05}$	$-6.8 \cdot 10^{-05}$	$-1.2 \cdot 10^{-04}$	$-1.6 \cdot 10^{-04}$	1.33
1528	6927	$-4.6 \cdot 10^{-05}$	$-2.8 \cdot 10^{-05}$	$-7.4 \cdot 10^{-05}$	$-8.6 \cdot 10^{-05}$	1.17
1772	14683	$-4.0 \cdot 10^{-05}$	$ -1.1 \cdot 10^{-06}$	$ -5.2 \cdot 10^{-05}$	$-5.9 \cdot 10^{-05}$	1.15

3D – laser surface hardening of steel

$\rightarrow\,$ Space-time finite elements methods

- optimize-then-discretize = discretize-then-optimize
- exact derivatives on the discrete level
- $\rightarrow\,$ Error estimation w.r.t. to a given quantity of interest
 - separation of time, space, control error
 - dynamic meshes
- $\rightarrow\,$ Extensions: problems with inequality constraints
 - control constraints
 - state constraints