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Introduction 1

Minimize
Jy, u) = g(y) +j(u)
subject to the variational inequality y € K

aly,v—y)>(u,v—y) VveK

with
K={yeHs(2): y<v}

References: Barbu, Bergounioux, Bonnans, Casas, Hintermiiller, Ito,
Kunisch, Mordukhovich, Mignot, Outrata, Puel, Tiba, ...

GAMM Workshop Trier '09 Daniel Wachsmuth, RICAM Linz



Obstacle Problem g

Bilinear form: a(-, ) coercive, induced by 2"%-order differential
operator A with smooth coefficients

Obstacle: 1 € H1(2), ¥|r > 0, Ay € L?(2)

Unique solvability: For every u € [2((2), the v.i. admits a unique
solution y € H3(2) N H?

Multiplier: A .= v — Ay with A >0, (A\,y —¢) =0

Control-to-state mapping:
u+ (y, ) is directional differentiable as H™1(2) — H3(2) x H ().

But neither differentiable nor Lipschitz as L2(2) — H?(2) x L?(£2),
hence pointwise discussion w.r.t. A Is difficult.
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Complementarity constraints - mpcc 3

Optimal control problem equivalent to

min J(y(u), u)
st. Y —y(u) 20, Mu) =20, (y =92 =0

Mathematical programming with complementarity constraints:

min f(z) s.t. F(x) >0, G(z) >0, F(x)'G(x) =0.

Standard constraint qualifications fail, extensive literature on
specialized MPCC-CQ.

= MPCC-CQ are satisfied (formally) for our problem
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Bi-level formulation 4

The variational inequality
aly,v—y)>(u,v—y) VveK

Is the necessary and sufficient optimality condition of a constrained
minimization problem.

Bi-level optimization problem:

min J(y, u)
uel?(2), yeH(£2)
1
y = argmin Ea(y,y) — (u,y)
veK
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Comparison to state-constrained problems 5

Consider the state constraint problem:
min J(y, u)

subject to

Equivalent bi-level formulation:

min Jy, u
uel?(), yekK (y )
1
y = argmin Ea(y,y) —(u,y)
yEH3(£2)
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Comparison to state-constrained problems 6

Control of variational inequality: (non-convex)
min J(y, u)
ueL?(2), yeH;(£2)
1
y = argmin a(y, y) — (v, y)
yeK
State constrained problem: (convex)
min J(y,u
uel?(2), yeK (y )
1
y = argmin sa(y, y) — (v, y)
y€EH(£2)

In the control problem for the variational inequality
e the state constraint i1s Imposed in the inner optimization problem

e every control is feasible (i.e. gives a feasible state)
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Necessary optimality conditions 7

Let T € L2(02) with y € H(2) N H?(£2), X € L2(£2) be locally optimal.

Theorem: [Mignot '76, Mignot-Puel '84]

There exist uniquely determined adjoint states p € H}(2) N L>(£2)
and i € H71(2) N (L*®(£2))* fulfilling:

e Adjoint equation and optimality condition
Ap+p+d(y)=0  j(0)—p=0
e Complementarity conditions
Ap =0 a.e. on 2
(i, (¥ — 1)) = 0 for all ¢ € C*(2) such that py|r =0,
e Sign conditions
p > 0 where y =4, (i1, p) > 0,

(i, @) >0 forall ¢ € Hy(2) with (X\,¢) =0 and ¢ > 0 on {y = ¥}
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Strong stationarity 8

Optimality system similar to strong stationarity in mpcc’s.

'Y

/

p=0

Open: prove strong stationarity for problems with additional control-
and state constraints [Hintermiiller, Kopacka '08] [Outrata, Jarusek, Stara '09]
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Lagrange formalism 9

Lagrange-function:

L=J(y,u)+{Ay+X—u,p)—(p.A)+ {4,y — )

e p multiplier to A >0
e 1 multiplier to y <

e in general no multiplier exists for A(y —¢) =0
[Bergounioux, Mignot '00]

Comparison to state-constrained problems:
e Only information about signs of p and & on part of the domain!

e No Interior point assumption Is needed.
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Sufficient optimality condition 10

1. Thereis v > 0 such that
J"(@)(h, h) > v||hl|7. forall h € L*(£2).

2. Forall h e L?(2)\ {0} and z = y'(&; h) with j/(G)h + ¢'(y)z = 0,
we have
9" (¥)(z,2) +j"(@)(h. h) > 0.

3. There exists a constant 7 > 0 such that
p>0on{yYy —17<y <y}
4. Moreover, [ satisfies

(B ¢) >0, ¢eHi(2).¢>0.
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Sufficient optimality condition 11

Theorem: [Kunisch, W "09]
Let (¥, T, A\, p, i) fulfill the optimality system. If assumptions (1)-
(4) are satisfied then i is locally optimal and it holds

J(y,u) > J(y, u)+allu— U||f2 for all ue L?(), ||lu—dl;2 < p,

with some a, p > 0.

Open: Stability of the sufficient condition.
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Sufficient optimality condition 12

Comparison to finite-dimensional mpcc:

Local decomposition approach not applicable: Small changes in T, y, A
can cause changes of the active / inactive sets.

= need stronger sign conditions on p and & than obtained by strong
stationarity.

Comparison to state constrained problems:

p and [ can be regarded as multipliers to A > 0 and y < 4, but:
e incomplete information about signs of p and i
e the mapping u+ X is not continuous from L2?(£2) to L*°((2).

We can weaken the assumption if we want to prove local optimality
with respect to the norm |[ul[;2 + [| || 1=.
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Smoothing the state equation 13

Starting point: The multiplier A fulfills
A=max(0, A\ +c(y —¢)) Vc>D0.
Smoothing:
Ae=FfA+cly—v)) c>0,1>0
Regularized equation:
Ay + fe(A+c(y —¥)) = u

Feasibility: If A > A for some large A > 0 then y. is feasible, y. < 9.

Convergence for ¢ — oc:
ye(ue) — y(u) in Hg(£2)

uo — uin H1(Q) = { o
Ae(ue) = Mu) in H Q)
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Reqularized problem 14

Minimize J(y, u) subject to
Ay + fe(A + c(y —¥)) = u.
— no Inequality constraints

Convergence: Global solutions (y,, u-) converge to global solutions of
the original problem. [lto, Kunisch "00]

Multipliers:
A*pe + fI(A+ c(y —¥))pe + g (ve) =0, j'(uc) — pe = 0.
Convergence of multipliers:
fe(L..)=:Xe = Xin H1(Q)
pc — P in Hy(£2)
fL(..)pe =1 the = B in HH(2)
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Approximation of local minima 15

Assumption: j(u) = 2|ul%,

Existence: For each strict local minimizer (y, i) there exists a family
(Ve, Uc)eso of local solutions of the regularized problem.

Convergence:

Ve, Ue, Ae) = (7,0, 2)  in H3(2) x L*(R2) x H ()
(Pe. tic) — (P, b in Hy(2) x H71(Q2)

Question: Is the path ¢ + u. continuous? Or even Lipschitz or
differentiable?
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Properties of the path 16

Value function: The function V(c¢) := J(y., uc) is continuous.

Path continuity: Under a modified second-order condition on (y, i)
and some positivity assumptions on p. (), it holds:

Theorem: [Kunisch, W "09]
The mapping ¢ — u. has a finite number of discontinuities. Hence,
there i1s C; such that ¢ — wu. iIs continuous for all ¢ > Cy; with
respect to the strong topology of L2(£2).

Differentiability: If the path ¢ — (yc, uc, pc) iIs continuous at ¢y then
It I1s also locally Lipschitz continuous at ¢y. Moreover, the path Is
Gateaux differentiable at ¢ if it is continuous in a neighborhood of ¢.

) Due to only weak convergence pc — p in H=1(£2), we cannot use p > 7 > 0 to

prove pc > 0.
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Outlook 17

Further work:

e Investigate properties of the value function (monotonicity,
convexity / concavity),

e Study path-following strategies for ¢ — 0.

Thank you very much!
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