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Introdution 1

Minimize J(y ; u) := g(y) + j(u)subjet to the variational inequality y 2 Ka(y ; v � y) � (u; v � y) 8v 2 Kwith K = fy 2 H10(
) : y �  g:

Referenes: Barbu, Bergounioux, Bonnans, Casas, Hinterm�uller, Ito,Kunish, Mordukhovih, Mignot, Outrata, Puel, Tiba, . . .
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Obstale Problem 2

Bilinear form: a(�; �) oerive, indued by 2nd -order di�erentialoperator A with smooth oeÆientsObstale:  2 H1(
),  j� � 0, A 2 L2(
)

Unique solvability: For every u 2 L2(
), the v.i. admits a uniquesolution y 2 H10(
) \H2Multiplier: � := u � Ay with � � 0, h�; y �  i = 0

Control-to-state mapping:u 7! (y ; �) is diretional di�erentiable as H�1(
)! H10(
)�H�1(
).But neither di�erentiable nor Lipshitz as L2(
)! H2(
)� L2(
),hene pointwise disussion w.r.t. � is diÆult.
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Complementarity onstraints - mp 3

Optimal ontrol problem equivalent tomin J(y(u); u)s.t.  � y(u) � 0; �(u) � 0; hy �  ; �i = 0Mathematial programming with omplementarity onstraints:min f (z) s.t. F (x) � 0; G(z) � 0; F (x)TG(x) = 0:Standard onstraint quali�ations fail, extensive literature onspeialized MPCC-CQ.) MPCC-CQ are satis�ed (formally) for our problem
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Bi-level formulation 4

The variational inequalitya(y ; v � y) � (u; v � y) 8v 2 Kis the neessary and suÆient optimality ondition of a onstrainedminimization problem.

Bi-level optimization problem:minu2L2(
); y2H10(
) J(y ; u)y = argminy2K 12a(y ; y)� (u; y)

GAMM Workshop Trier '09 Daniel Wahsmuth, RICAM Linz



Comparison to state-onstrained problems 5

Consider the state onstraint problem:min J(y ; u)subjet to Ay = u; y �  :Equivalent bi-level formulation:minu2L2(
); y2K J(y ; u)y = argminy2H10(
) 12a(y ; y)� (u; y)
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Comparison to state-onstrained problems 6Control of variational inequality: (non-onvex)minu2L2(
); y2H10(
) J(y ; u)y = argminy2K 12a(y ; y)� (u; y)

State onstrained problem: (onvex)minu2L2(
); y2K J(y ; u)y = argminy2H10(
) 12a(y ; y)� (u; y)

In the ontrol problem for the variational inequality� the state onstraint is imposed in the inner optimization problem� every ontrol is feasible (i.e. gives a feasible state)GAMM Workshop Trier '09 Daniel Wahsmuth, RICAM Linz
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Neessary optimality onditions 7Let �u 2 L2(
) with �y 2 H10(
)\H2(
); �� 2 L2(
) be loally optimal.Theorem: [Mignot '76, Mignot-Puel '84℄There exist uniquely determined adjoint states �p 2 H10(
) \ L1(
)and �� 2 H�1(
) \ (L1(
))� ful�lling:� Adjoint equation and optimality onditionA��p + ��+ g0(�y) = 0; j 0(�u)� �p = 0� Complementarity onditions���p = 0 a.e. on 
;h��;'(�y �  )i = 0 for all ' 2 C1( �
) suh that ' j� = 0;� Sign onditions�p � 0 where �y =  ; h��; �pi � 0;h��; �i � 0 for all � 2 H10(
) with h��; �i = 0 and � � 0 on f�y =  g:GAMM Workshop Trier '09 Daniel Wahsmuth, RICAM Linz



Strong stationarity 8Optimality system similar to strong stationarity in mp's.

PSfrag replaements

�
p � 0; � � 0� = 0

0
p = 0

y �  Open: prove strong stationarity for problems with additional ontrol-and state onstraints [Hinterm�uller, Kopaka '08℄ [Outrata, Jarusek, Stara '09℄GAMM Workshop Trier '09 Daniel Wahsmuth, RICAM Linz



Lagrange formalism 9

Lagrange-funtion:L = J(y ; u) + hAy + �� u; pi � hp; �i+ h�; y �  i� p multiplier to � � 0� � multiplier to y �  � in general no multiplier exists for �(y �  ) = 0[Bergounioux, Mignot '00℄

Comparison to state-onstrained problems:� Only information about signs of �p and �� on part of the domain!� No interior point assumption is needed.
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SuÆient optimality ondition 10

1. There is  > 0 suh thatj 00(�u)(h; h) � khk2L2 for all h 2 L2(
):2. For all h 2 L2(
) n f0g and z = y 0(�u; h) with j 0(�u)h + g0(�y)z = 0;we have g00(�y)(z; z) + j 00(�u)(h; h) > 0:3. There exists a onstant � > 0 suh that�p � 0 on f � � < �y <  g:4. Moreover, �� satis�esh��; �i � 0; � 2 H10(
); � � 0:
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SuÆient optimality ondition 11

Theorem: [Kunish, W '09℄Let (�y ; �u; ��; �p; ��) ful�ll the optimality system. If assumptions (1){(4) are satis�ed then �u is loally optimal and it holdsJ(y ; u) � J(�y ; �u)+�ku� �uk2L2 for all u 2 L2(
); ku� �ukL2 � �;with some �; � > 0.

Open: Stability of the suÆient ondition.
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SuÆient optimality ondition 12

Comparison to �nite-dimensional mp:Loal deomposition approah not appliable: Small hanges in �u; �y; ��an ause hanges of the ative / inative sets.) need stronger sign onditions on �p and �� than obtained by strongstationarity.Comparison to state onstrained problems:�p and �� an be regarded as multipliers to � � 0 and y �  , but:� inomplete information about signs of �p and ��� the mapping u 7! � is not ontinuous from L2(
) to L1(
).We an weaken the assumption if we want to prove loal optimalitywith respet to the norm kukL2 + k�kL1 .
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Smoothing the state equation 13Starting point: The multiplier � ful�lls� = max(0; �+ (y �  )) 8 > 0:Smoothing: � = f(~�+ (y �  ))  > 0; ~� > 0Regularized equation:Ay + f(~�+ (y �  )) = uFeasibility: If ~� > � for some large � > 0 then y is feasible, y �  .

Convergene for  !1:u ! u in H�1(
)) { y(u)! y(u) in H10(
)�(u)! �(u) in H�1(
)
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Regularized problem 14Minimize J(y ; u) subjet toAy + f(~�+ (y �  )) = u:! no inequality onstraintsConvergene: Global solutions (y ; u) onverge to global solutions ofthe original problem. [Ito, Kunish '00℄Multipliers:A�p + f 0 (~�+ (y �  ))p + g0(y) = 0; j 0(u)� p = 0:Convergene of multipliers:f(: : : ) =: � ! �� in H�1(
)p * �p in H10(
)f 0 (: : : )p =: � * �� in H�1(
)
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Approximation of loal minima 15

Assumption: j(u) = 2 kuk2L2Existene: For eah strit loal minimizer (�y ; �u) there exists a family(y ; u)>0 of loal solutions of the regularized problem.Convergene:(y ; u ; �)! (�y ; �u; ��) in H10(
)� L2(
)�H�1(
)(p ; �)* (�p; ��) in H10(
)�H�1(
)Question: Is the path  7! u ontinuous? Or even Lipshitz ordi�erentiable?
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Properties of the path 16Value funtion: The funtion V () := J(y ; u) is ontinuous.Path ontinuity: Under a modi�ed seond-order ondition on (�y ; �u)and some positivity assumptions on p (�), it holds:Theorem: [Kunish, W '09℄The mapping  7! u has a �nite number of disontinuities. Hene,there is C1 suh that  7! u is ontinuous for all  > C1 withrespet to the strong topology of L2(
).Di�erentiability: If the path  7! (y ; u ; p) is ontinuous at 0 thenit is also loally Lipshitz ontinuous at 0. Moreover, the path isGateaux di�erentiable at 0 if it is ontinuous in a neighborhood of 0.(�) Due to only weak onvergene p * �p in H�1(
), we annot use �p � � > 0 toprove p � 0.GAMM Workshop Trier '09 Daniel Wahsmuth, RICAM Linz



Outlook 17Further work:� Investigate properties of the value funtion (monotoniity,onvexity / onavity),� Study path-following strategies for  !1.

Thank you very muh!
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