
On the efficient exploitation of sparsity

Andrea Walther
Institut für Mathematik
Universität Paderborn

Workshop on PDE constrained optimization 2009

Trier, June 3–5, 2009

Outline

1 Motivation

2 Computing Sparsity Patterns of Hessians

3 Numerical Results

4 Conclusion and Outlook

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 1 / 19

Motivation

Optimal Power Flow Problem

(Fabrice Zaoui, Laure Castaing, RTE France)

Task: Distribute power flow over given network

Difficulty: Unabservable areas due to
lack of sensors

error in data transmission

. . .

Approximate required data in unabservable areas

min f (x), c(x) = 0 h(x) ≤ 0,
f : Rn → R, c : Rn → Rm, h : Rn → Rp

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 2 / 19

Motivation

Optimization Problem

Task: min
x

f (x) s.t. c(x) = 0

Consider Lagrangian L(x , λ) = f (x) + λT c(x)

Solve

0 = [g(x , λ), c(x)] ≡
[
∇f (x) + λT ∇c(x), c(x)

]
∈ Rn+m,

but how?

Apply SQP method, i.e., apply iteration

∇2
x ,λL(xk , λk) pN

k =

[
B(xk , λk) A(xk)T

A(xk) 0

]
pN

k = −∇x ,λL(xk , λk)

Quite often B(x , λ), A(x) are sparse !!

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 3 / 19

Motivation

Optimization Problem

Task: min
x

f (x) s.t. c(x) = 0

Consider Lagrangian L(x , λ) = f (x) + λT c(x)

Solve

0 = [g(x , λ), c(x)] ≡
[
∇f (x) + λT ∇c(x), c(x)

]
∈ Rn+m,

but how?
Apply SQP method, i.e., apply iteration

∇2
x ,λL(xk , λk) pN

k =

[
B(xk , λk) A(xk)T

A(xk) 0

]
pN

k = −∇x ,λL(xk , λk)

Quite often B(x , λ), A(x) are sparse !!

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 3 / 19

Motivation

Optimal Power Flow (Discretizations)

n m p nnz(c) nnz(h) nnz(L) time
5,986 2,415 1,575 21,065 6,300 21,068 11

17,958 7,245 11,123 63,179 31,692 64,668 55
29,930 12,075 20,671 105,301 57,084 108,278 129
53,874 21,735 39,767 189,529 107,868 195,478 412

101,762 41,055 77,959 358,025 209,436 369,916 1326

using an interior point method (Zaoui 2008)

But:
Large amount of runtime needed for detection of
sparsity pattern of Hessian!!

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 4 / 19

Motivation

Optimal Power Flow (Discretizations)

n m p nnz(c) nnz(h) nnz(L) time
5,986 2,415 1,575 21,065 6,300 21,068 11

17,958 7,245 11,123 63,179 31,692 64,668 55
29,930 12,075 20,671 105,301 57,084 108,278 129
53,874 21,735 39,767 189,529 107,868 195,478 412

101,762 41,055 77,959 358,025 209,436 369,916 1326

using an interior point method (Zaoui 2008)

But:
Large amount of runtime needed for detection of
sparsity pattern of Hessian!!

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 4 / 19

Computing Sparsity Patterns of Hessians

Computation of Sparse Derivative Matrices

B(x , λ), A(x) sparse Direct sparse solves possible!!

Would like to compute B(x , λ) and A(x) efficiently

Four step procedure:

3 421

function
L

sparsity
pattern

PL
seed
matrix

SL
compressed

representation

B̃ = BSL
nonzero
entries

bvec

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 5 / 19

Computing Sparsity Patterns of Hessians

Computation of Sparse Derivative Matrices

B(x , λ), A(x) sparse Direct sparse solves possible!!

Would like to compute B(x , λ) and A(x) efficiently

Four step procedure:

3 421

function
L

sparsity
pattern

PL
seed
matrix

SL
compressed

representation

B̃ = BSL
nonzero
entries

bvec

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 5 / 19

Computing Sparsity Patterns of Hessians

Unwrapping the Four-Step Procedure

Step 1 : Sparsity pattern detection (PL)
Performed only once

Algorithmic Differentiation (AD) to compute PL

Step 2 : Seed matrix computation (SL ∈ {0, 1}n×p)
Performed only once

Uses graph coloring methods (direct, indirect)
[Gebremedhin, Manne, Pothen ’05]

Step 3 : Compressed matrix computation (B̃ = BSL)
Few derivative matrix-vector products evaluated for each x

AD for derivative matrix × vector products

Step 4 : Recovery of values of entries (B(x , λ))
non trivial task for indirect methods

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 6 / 19

Computing Sparsity Patterns of Hessians

Unwrapping the Four-Step Procedure

Step 1 : Sparsity pattern detection (PL)
Performed only once

Algorithmic Differentiation (AD) to compute PL

Step 2 : Seed matrix computation (SL ∈ {0, 1}n×p)
Performed only once

Uses graph coloring methods (direct, indirect)
[Gebremedhin, Manne, Pothen ’05]

Step 3 : Compressed matrix computation (B̃ = BSL)
Few derivative matrix-vector products evaluated for each x

AD for derivative matrix × vector products

Step 4 : Recovery of values of entries (B(x , λ))
non trivial task for indirect methods

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 6 / 19

Computing Sparsity Patterns of Hessians

Unwrapping the Four-Step Procedure

Step 1 : Sparsity pattern detection (PL)
Performed only once

Algorithmic Differentiation (AD) to compute PL

Step 2 : Seed matrix computation (SL ∈ {0, 1}n×p)
Performed only once

Uses graph coloring methods (direct, indirect)
[Gebremedhin, Manne, Pothen ’05]

Step 3 : Compressed matrix computation (B̃ = BSL)
Few derivative matrix-vector products evaluated for each x

AD for derivative matrix × vector products

Step 4 : Recovery of values of entries (B(x , λ))
non trivial task for indirect methods

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 6 / 19

Computing Sparsity Patterns of Hessians

Unwrapping the Four-Step Procedure

Step 1 : Sparsity pattern detection (PL)
Performed only once

Algorithmic Differentiation (AD) to compute PL

Step 2 : Seed matrix computation (SL ∈ {0, 1}n×p)
Performed only once

Uses graph coloring methods (direct, indirect)
[Gebremedhin, Manne, Pothen ’05]

Step 3 : Compressed matrix computation (B̃ = BSL)
Few derivative matrix-vector products evaluated for each x

AD for derivative matrix × vector products

Step 4 : Recovery of values of entries (B(x , λ))
non trivial task for indirect methods

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 6 / 19

Computing Sparsity Patterns of Hessians

Assumptions:
f : Rn → R, y = f (x), twice continuously differentiable
function evaluation consists of unary or binary operations

Algorithm I: Function Evaluation

for i = 1, . . . , n
vi−n = xi

for i = 1, . . . , l
vi = ϕi(vj)j≺i

y = vl

with precedence relation j ≺ i :

ϕi(vj)j≺i = ϕi(vj) or ϕi(vj)j≺i = ϕi(vj , vl) with j , l < i

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 7 / 19

Computing Sparsity Patterns of Hessians

Assumptions:
f : Rn → R, y = f (x), twice continuously differentiable
function evaluation consists of unary or binary operations

Algorithm I: Function Evaluation

for i = 1, . . . , n
vi−n = xi

for i = 1, . . . , l
vi = ϕi(vj)j≺i

y = vl

with precedence relation j ≺ i :

ϕi(vj)j≺i = ϕi(vj) or ϕi(vj)j≺i = ϕi(vj , vl) with j , l < i

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 7 / 19

Computing Sparsity Patterns of Hessians

Nonlinear Interaction Domains

Index domains [Griewank 2000]:

Xi ≡ {j ≤ n : j − n ≺∗ i} for i = 1− n, . . . , l

One has: {
j ≤ n :

∂vi

∂xj
6= 0

}
⊆ Xi

For sparse Hessians additionally nonlinear interaction domains{
j ≤ n :

∂2y
∂xi∂xj

6= 0
}
⊆ Ni

for i = 1, . . . , n.

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 8 / 19

Computing Sparsity Patterns of Hessians

Nonlinear Interaction Domains

Index domains [Griewank 2000]:

Xi ≡ {j ≤ n : j − n ≺∗ i} for i = 1− n, . . . , l

One has: {
j ≤ n :

∂vi

∂xj
6= 0

}
⊆ Xi

For sparse Hessians additionally nonlinear interaction domains{
j ≤ n :

∂2y
∂xi∂xj

6= 0
}
⊆ Ni

for i = 1, . . . , n.
Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 8 / 19

Computing Sparsity Patterns of Hessians

Theorem (Numerical Stability of Hessian Calculation)
The recovery routines for the computation of the compressed
representation of the Hessians are numerical stable, i.e. the
magnitude of the error associated with the computation of H[i , j] is
bounded by the product of nT (hi), the number of vertices in the subtree
T (hi) of T , and a constant independent of T .

Proof: [Gebremedhin, Pothen, Tarafdar, Walther 2009]

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 9 / 19

Computing Sparsity Patterns of Hessians

Theorem (Complexity result of Sparsity Pattern)
Let OPS(NID) denote the number of operations needed to generate all
Ni , 1 ≤ i ≤ n. Then, the inequality

OPS
(
NID

)
≤ 6(1 + n̂)

l∑
i=1

n̄i

is valid, where l is the number of elemental functions evaluated to
compute the function value, n̄i = |Xi |, and n̂ = max1≤i≤n |Ni |.

Proof: [Walther 2008]

For L(x , λ) = f (x) + λT c(x) detailed examination of
l∑

i=1
n̄i

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 10 / 19

Computing Sparsity Patterns of Hessians

Theorem (Complexity result of Sparsity Pattern)
Let OPS(NID) denote the number of operations needed to generate all
Ni , 1 ≤ i ≤ n. Then, the inequality

OPS
(
NID

)
≤ 6(1 + n̂)

l∑
i=1

n̄i

is valid, where l is the number of elemental functions evaluated to
compute the function value, n̄i = |Xi |, and n̂ = max1≤i≤n |Ni |.

Proof: [Walther 2008]

For L(x , λ) = f (x) + λT c(x) detailed examination of
l∑

i=1
n̄i

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 10 / 19

Computing Sparsity Patterns of Hessians

Theorem (Complexity result of Sparsity Pattern)
Let OPS(NID) denote the number of operations needed to generate all
Ni , 1 ≤ i ≤ n. Then, the inequality

OPS
(
NID

)
≤ 6(1 + n̂)

l∑
i=1

n̄i

is valid, where l is the number of elemental functions evaluated to
compute the function value, n̄i = |Xi |, and n̂ = max1≤i≤n |Ni |.

Proof: [Walther 2008]

For L(x , λ) = f (x) + λT c(x) detailed examination of
l∑

i=1
n̄i

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 10 / 19

Computing Sparsity Patterns of Hessians

Required runtime?

For Lagrangian L(x , λ) = f (x) + λT c(x) usually

n̄i = n for a considerable amount of intermediates

Alternative: Exploit additional structure!

Compute sparsity pattern of objective Sf

Detect linear constraints together with sparsity pattern of Jacobian

If required, compute “sparsity pattern” of constraints Sc

Compute sparsity pattern S = Sf v Sc

with n̄i � n for Sc in PDE constrained context!

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 11 / 19

Computing Sparsity Patterns of Hessians

Required runtime?

For Lagrangian L(x , λ) = f (x) + λT c(x) usually

n̄i = n for a considerable amount of intermediates

Alternative: Exploit additional structure!

Compute sparsity pattern of objective Sf

Detect linear constraints together with sparsity pattern of Jacobian

If required, compute “sparsity pattern” of constraints Sc

Compute sparsity pattern S = Sf v Sc

with n̄i � n for Sc in PDE constrained context!

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 11 / 19

Computing Sparsity Patterns of Hessians

Required runtime?

For Lagrangian L(x , λ) = f (x) + λT c(x) usually

n̄i = n for a considerable amount of intermediates

Alternative: Exploit additional structure!

Compute sparsity pattern of objective Sf

Detect linear constraints together with sparsity pattern of Jacobian

If required, compute “sparsity pattern” of constraints Sc

Compute sparsity pattern S = Sf v Sc

with n̄i � n for Sc in PDE constrained context!

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 11 / 19

Numerical Results

Automatic differentiation by overloading in C++

ADOL-C version 2.0

reorganization of taping
tape dependent information kept in separate structure

different differentiation contexts ⇒
documented external function facility
documented fixpoint iteration facility
documented checkpointing facility based on revolve

documented parallelization of derivative calculation

coupled with ColPack for exploitation of sparsity

available at COIN-OR since May 2009

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 12 / 19

Numerical Results

Testproblems

Boundary Control with Dirichlet boundary conditions (2D)

Boundary Control with Dirichlet boundary conditions (3D)

Distributed Control with Dirichlet boundary conditions (2D)

Distributed Control with Neumann boundary conditions (2D)

out of

Hans Mittelmann:
Optimization Techniques for Solving Elliptic Control Problems with
Control and State Constraints. Part 1+2

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 13 / 19

Numerical Results

Sparsity Pattern of Jacobian

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 20000 40000 60000 80000 100000 120000 140000

ru
nt

im
e

in
 s

ec

n

MBCD
MBCD3D

MDCD
MDCN

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 14 / 19

Numerical Results

Boundary Control + Dirichlet conditions (2D)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

ru
nt

im
e

in
 s

ec

n

original
new approach

Linear constraints!
Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 15 / 19

Numerical Results

Boundary Control + Dirichlet conditions (3D)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 20000 40000 60000 80000 100000 120000

ru
nt

im
e

in
 s

ec

n

original
new approach

Linear constraints!
Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 16 / 19

Numerical Results

Distributed Control + Dirichlet conditions (2D)

 0

 5000

 10000

 15000

 20000

 25000

 0 20000 40000 60000 80000 100000 120000 140000

ru
nt

im
e

in
 s

ec

n

original
new approach

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 17 / 19

Numerical Results

Distributed Control + Neumann conditions (2D)

 0

 5000

 10000

 15000

 20000

 25000

 0 20000 40000 60000 80000 100000 120000 140000

ru
nt

im
e

in
 s

ec

n

original
new approach

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 18 / 19

Conclusion and Outlook

Conclusion and Outlook

Analysis of sparsity detection routines + recovery

ADOL-C coupled with COLPACK for graph coloring

Runtimes for sparsity pattern detection of Jacobian OK
numerical tests confirm majority of theoretical results

Similar study on Hessian computation
(Gebremedhin, Pothen, Tarafdar, Walther, 2009)
Efficient sparsity detection for Hessians
requires additional exploitation of structure for PDE-constrained
optimization

Coupling of ADOL-C with IPOPT for large scale optimization

Andrea Walther Efficient of Exploiting Sparsity Trier, June 3–5, 2009, 2009 19 / 19

	Motivation
	Computing Sparsity Patterns of Hessians
	Numerical Results
	Conclusion and Outlook

