On the efficient exploitation of sparsity

Andrea Walther Institut für Mathematik Universität Paderborn

Workshop on PDE constrained optimization 2009

Trier, June 3–5, 2009

- 2 [Computing Sparsity Patterns of Hessians](#page-7-0)
- 3 [Numerical Results](#page-24-0)
- **[Conclusion and Outlook](#page-31-0)**

Optimal Power Flow Problem

(Fabrice Zaoui, Laure Castaing, RTE France)

Task: Distribute power flow over given network

Difficulty: Unabservable areas due to

- **a** lack of sensors
- **e** error in data transmission

 \bullet ...

Approximate required data in unabservable areas

$$
\min_{f: \mathbb{R}^n \to \mathbb{R}, \quad c: \mathbb{R}^n \to \mathbb{R}^m, \quad h: \mathbb{R}^n \to \mathbb{R}^n}
$$
\n
$$
f: \mathbb{R}^n \to \mathbb{R}, \quad c: \mathbb{R}^n \to \mathbb{R}^m, \quad h: \mathbb{R}^n \to \mathbb{R}^p
$$

Optimization Problem

- Task: $\min_{x} f(x)$ s.t. $c(x) = 0$
- Consider Lagrangian $\mathcal{L}(x,\lambda) = f(x) + \lambda^T c(x)$

• Solve

$$
0=[g(x,\lambda),c(x)]\equiv\left[\nabla f(x)+\lambda^T\nabla c(x), c(x)\right]\in\mathbb{R}^{n+m},
$$

but how?

Optimization Problem

- Task: $\min_{x} f(x)$ s.t. $c(x) = 0$
- Consider Lagrangian $\mathcal{L}(x,\lambda) = f(x) + \lambda^T c(x)$

• Solve

$$
0=[g(x,\lambda),c(x)]\equiv\Big[\nabla f(x)+\lambda^T\nabla c(x),\ c(x)\Big]\in\mathbb{R}^{n+m},
$$

but how?

• Apply SQP method, i.e., apply iteration

$$
\nabla^2_{X,\lambda}\mathcal{L}(x_k,\lambda_k)\,\rho^N_k=\left[\begin{array}{cc}B(x_k,\lambda_k)&A(x_k)^T\\A(x_k)&0\end{array}\right]\,\rho^N_k=-\nabla_{x,\lambda}\mathcal{L}(x_k,\lambda_k)
$$

• Quite often $B(x, \lambda)$, $A(x)$ are sparse !!

Optimal Power Flow (Discretizations)

using an interior point method (Zaoui 2008)

Optimal Power Flow (Discretizations)

using an interior point method (Zaoui 2008)

But:

Large amount of runtime needed for detection of sparsity pattern of Hessian!!

Computation of Sparse Derivative Matrices

 $B(x, \lambda)$, $A(x)$ sparse \longrightarrow Direct sparse solves possible!!

Would like to compute $B(x, \lambda)$ and $A(x)$ *efficiently*

Computation of Sparse Derivative Matrices

 $B(x, \lambda)$, $A(x)$ sparse \longrightarrow Direct sparse solves possible!!

Would like to compute $B(x, \lambda)$ and $A(x)$ *efficiently*

Four step procedure:

Step **1** : Sparsity pattern detection (*P_C*) Performed only once

Algorithmic Differentiation (AD) to compute P_L

Step **1** : Sparsity pattern detection (*P_C*) Performed only once

Algorithmic Differentiation (AD) to compute P_C

Step 2: Seed matrix computation $(S_{\mathcal{L}} \in \{0, 1\}^{n \times p})$ Performed only once Uses graph coloring methods (direct, indirect)

[Gebremedhin, Manne, Pothen '05]

Step **1** : Sparsity pattern detection (*P_C*) Performed only once

Algorithmic Differentiation (AD) to compute P_C

Step 2: Seed matrix computation $(S_{\mathcal{L}} \in \{0, 1\}^{n \times p})$ Performed only once Uses graph coloring methods (direct, indirect) [Gebremedhin, Manne, Pothen '05]

Step **3**: Compressed matrix computation ($\tilde{B} = BS_C$) Few derivative matrix-vector products evaluated for each *x* \rightarrow AD for derivative matrix \times vector products

Step **1** : Sparsity pattern detection (*P_C*) Performed only once

Algorithmic Differentiation (AD) to compute P_C

Step 2: Seed matrix computation $(S_{\mathcal{L}} \in \{0, 1\}^{n \times p})$ Performed only once Uses graph coloring methods (direct, indirect) [Gebremedhin, Manne, Pothen '05]

Step **3**: Compressed matrix computation ($\tilde{B} = BS_C$) Few derivative matrix-vector products evaluated for each *x* \rightarrow AD for derivative matrix \times vector products

Step $\overline{4}$: Recovery of values of entries $(B(x, \lambda))$ non trivial task for indirect methods

Assumptions:

- $f: \mathbb{R}^n \to \mathbb{R}, y = f(x)$, twice continuously differentiable
- **•** function evaluation consists of unary or binary operations

Assumptions:

- $f: \mathbb{R}^n \to \mathbb{R}, y = f(x)$, twice continuously differentiable
- **•** function evaluation consists of unary or binary operations

Algorithm I: Function Evaluation

$$
\begin{array}{l}\n\text{for } i = 1, \dots, n \\
v_{i-n} = x_i \\
\text{for } i = 1, \dots, l \\
v_i = \varphi_i(v_j)_{j \prec i} \\
y = v_l\n\end{array}
$$

with precedence relation $j \prec i$:

$$
\varphi_i(\mathsf{v}_j)_{j \prec i} = \varphi_i(\mathsf{v}_j) \quad \text{or} \quad \varphi_i(\mathsf{v}_j)_{j \prec i} = \varphi_i(\mathsf{v}_j, \mathsf{v}_l) \quad \text{with} \quad j, l < i
$$

Nonlinear Interaction Domains

Index domains [Griewank 2000]:

$$
\mathcal{X}_i \equiv \{j \leq n : j - n \prec^* i\} \quad \text{for} \quad i = 1 - n, \ldots, l
$$

One has:

$$
\left\{j\leq n\,:\,\frac{\partial\textit{v}_i}{\partial\textit{x}_j}\neq 0\right\}\subseteq\mathcal{X}_i
$$

Nonlinear Interaction Domains

Index domains [Griewank 2000]:

$$
\mathcal{X}_i \equiv \{j \leq n : j - n \prec^* i\} \quad \text{for} \quad i = 1 - n, \ldots, l
$$

One has:

$$
\left\{j\leq n\,:\,\frac{\partial \textit{v}_i}{\partial x_j}\neq 0\right\}\subseteq \mathcal{X}_i
$$

For sparse Hessians additionally nonlinear interaction domains

$$
\left\{j\leq n\,:\,\frac{\partial^2y}{\partial x_i\partial x_j}\neq 0\right\}\subseteq \mathcal{N}_i
$$

for $i = 1, ..., n$.

Theorem (Numerical Stability of Hessian Calculation)

The recovery routines for the computation of the compressed representation of the Hessians are numerical stable, i.e. the magnitude of the error associated with the computation of H[*i*, *j*] *is bounded by the product of nT*(*hⁱ*) *, the number of vertices in the* subtree *T*(*hi*) *of T , and a constant independent of T .*

Proof: [Gebremedhin, Pothen, Tarafdar, Walther 2009]

Theorem (Complexity result of Sparsity Pattern)

Let OPS(*NID*) *denote the number of operations needed to generate all* \mathcal{N}_i , 1 \leq i \leq n. Then, the inequality

$$
OPS(NID) \leq 6(1 + \hat{n}) \sum_{i=1}^{I} \bar{n}_i
$$

is valid, where l is the number of elemental functions evaluated to compute the function value, $\bar{n}_i = |\mathcal{X}_i|$ *, and* $\hat{n} = \max_{1 \leq i \leq n} |\mathcal{N}_i|$ *.*

Theorem (Complexity result of Sparsity Pattern)

Let OPS(*NID*) *denote the number of operations needed to generate all* \mathcal{N}_i , 1 \leq i \leq n. Then, the inequality

$$
OPS(NID) \leq 6(1 + \hat{n}) \sum_{i=1}^{I} \bar{n}_i
$$

is valid, where l is the number of elemental functions evaluated to compute the function value, $\bar{n}_i = |\mathcal{X}_i|$ *, and* $\hat{n} = \max_{1 \leq i \leq n} |\mathcal{N}_i|$ *.*

Proof: [Walther 2008]

Theorem (Complexity result of Sparsity Pattern)

Let OPS(*NID*) *denote the number of operations needed to generate all* \mathcal{N}_i , 1 \leq i \leq n. Then, the inequality

$$
OPS(NID) \leq 6(1 + \hat{n}) \sum_{i=1}^{I} \bar{n}_i
$$

is valid, where l is the number of elemental functions evaluated to compute the function value, $\bar{n}_i = |\mathcal{X}_i|$ *, and* $\hat{n} = \max_{1 \leq i \leq n} |\mathcal{N}_i|$ *.*

Proof: [Walther 2008]

For
$$
\mathcal{L}(x, \lambda) = f(x) + \lambda^T c(x)
$$
 detailed examination of $\sum_{i=1}^{T} \bar{n}_i$

Required runtime?

Required runtime?

For Lagrangian $\mathcal{L}(x,\lambda) = f(x) + \lambda^T\,c(x)$ usually

 $\bar{n}_i = n$ for a considerable amount of intermediates

Required runtime?

For Lagrangian $\mathcal{L}(x,\lambda) = f(x) + \lambda^T\,c(x)$ usually

 $\bar{n}_i = n$ for a considerable amount of intermediates

Alternative: Exploit additional structure!

- Compute sparsity pattern of objective *S^f*
- Detect linear constraints together with sparsity pattern of Jacobian
- \bullet If required, compute "sparsity pattern" of constraints S_c
- Compute sparsity pattern $S = S_f \vee S_c$

with $\bar{n}_i \ll n$ for S_c in PDE constrained context!

Automatic differentiation by overloading in C++

ADOL-C version 2.0

- **•** reorganization of taping tape dependent information kept in separate structure
- \bullet different differentiation contexts \Rightarrow
	- documented external function facility
	- documented fixpoint iteration facility
	- documented checkpointing facility based on revolve
- **•** documented parallelization of derivative calculation
- coupled with ColPack for exploitation of sparsity
- • available at COIN-OR since May 2009

Testproblems

- Boundary Control with Dirichlet boundary conditions (2D)
- Boundary Control with Dirichlet boundary conditions (3D)
- Distributed Control with Dirichlet boundary conditions (2D)
- Distributed Control with Neumann boundary conditions (2D)

out of

Hans Mittelmann:

Optimization Techniques for Solving Elliptic Control Problems with Control and State Constraints. Part 1+2

Sparsity Pattern of Jacobian

Boundary Control + Dirichlet conditions (2D)

Linear constraints!

Boundary Control + Dirichlet conditions (3D)

Linear constraints!

Distributed Control + Dirichlet conditions (2D)

Distributed Control + Neumann conditions (2D)

Conclusion and Outlook

- Analysis of sparsity detection routines + recovery
- ADOL-C coupled with COLPACK for graph coloring
- Runtimes for sparsity pattern detection of Jacobian OK numerical tests confirm majority of theoretical results
- Similar study on Hessian computation (Gebremedhin, Pothen, Tarafdar, Walther, 2009)
- **•** Efficient sparsity detection for Hessians requires additional exploitation of structure for PDE-constrained optimization
- Coupling of ADOL-C with IPOPT for large scale optimization